Câu hỏi:

05/07/2022 357

Cho phương trình \[{\log _3}\frac{{2{x^2} - x + m}}{{{x^2} + 1}} = {x^2} + x + 4 - m.\] Có bao nhiêu giá trị nguyên của tham số \[m \in \left[ { - 2018;2018} \right]\] để phương trình có hai nghiệm trái dấu?

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D

ĐK: \(2{{\rm{x}}^2} - x + m > 0\).

Ta có: PT \( \Leftrightarrow {\log _3}\left( {2{{\rm{x}}^2} - x + m} \right) - {\log _3}\left( {{x^2} + 1} \right) = - \left( {2{{\rm{x}}^2} - x + m} \right) + 3\left( {{x^2} + 1} \right) + 1\)

\( \Leftrightarrow {\log _3}\left( {2{{\rm{x}}^2} - x + m} \right) - {\log _3}\left[ {3\left( {{x^2} + 1} \right)} \right] = - \left( {2{{\rm{x}}^2} - x + m} \right) + 3\left( {{x^2} + 1} \right)\)

\( \Leftrightarrow {\log _3}\left( {2{{\rm{x}}^2} - x + m} \right) + \left( {2{{\rm{x}}^2} - x + m} \right) = {\log _3}\left[ {3\left( {{x^2} + 1} \right)} \right] + 3\left( {{x^2} + 1} \right)\)        (*)

Xét hàm số \(f\left( t \right) = {\log _3}t + t{\rm{ }}\left( {t > 0} \right)\) ta có: \(f'\left( t \right) = \frac{1}{{t\ln 3}} + 1 > 0{\rm{ }}\left( {\forall t > 0} \right)\) do đó hàm số \(f\left( t \right)\) đồng biến trên \(\mathbb{R}\).

Khi đó (*) \( \Leftrightarrow f\left( {2{{\rm{x}}^2} - x + m} \right) = f\left[ {3\left( {{x^2} + 1} \right)} \right] \Leftrightarrow 2{{\rm{x}}^2} - x + m = 3\left( {{x^2} + 1} \right)\) (thỏa mãn điều kiện)

\( \Leftrightarrow {x^2} + x + 3 - m = 0{\rm{ }}\left( {x \in \mathbb{R}} \right)\).

Phương trình đã cho có 2 nghiệm trái dấu khi \(P = ac = 3 - m < 0 \Leftrightarrow m > 3\).

Kết hợp \(\left\{ \begin{array}{l}m \in \mathbb{Z}\\m \in \left[ { - 2018;2018} \right]\end{array} \right. \Rightarrow \) có 2015 giá trị của tham số m.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm nguyên hàm của hàm số \[f\left( x \right) = {\left( {3 - 5x} \right)^4}.\]

Xem đáp án » 05/07/2022 3,195

Câu 2:

Tính diện tích S của phần hình phẳng gạch sọc (như hình vẽ bên dưới) giới hạn bởi đồ thị của hàm số bậc ba \[y = a{x^3} + b{x^2} + cx + d\] và trục hoành.

Tính diện tích S của phần hình phẳng gạch sọc (như hình vẽ bên dưới) (ảnh 1)

Xem đáp án » 05/07/2022 3,113

Câu 3:

Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \[y = {x^3} - 3{x^2} + 4\] trên đoạn \[\left[ { - 1;3} \right]\]. Giá trị của biểu thức \[P = {M^2} - {m^2}\]

Xem đáp án » 05/07/2022 2,965

Câu 4:

Một hình trụ có bán kính đáy và chiều cao đều bằng 4 dm. Một hình vuông ABCD có hai cạnh AB và CD lần lượt là các dây cung của hai đường tròn đáy. Biết mặt phẳng (ABCD) không vuông góc với mặt đáy của hình trụ. Tính diện tích S của hình vuông \[ABCD.\]

Xem đáp án » 05/07/2022 2,088

Câu 5:

Cho số phức \[z = a + bi\left( {a,b \in \mathbb{R}} \right)\] thỏa mãn \[z + 7 + i - \left| z \right|\left( {2 + i} \right) = 0\] \[\left| z \right| < 3.\] Tính giá trị \[P = a + b.\]

Xem đáp án » 05/07/2022 1,657

Câu 6:

Cho hàm số \[y = f\left( x \right).\] Hàm số \[y = f'\left( x \right)\] có đồ thị như hình vẽ bên. Bất phương trình \[3f\left( x \right) + {x^3} < a - 3x\ln x\] có nghiệm thuộc đoạn \[\left[ {1;2} \right]\] khi và chỉ khi

Cho hàm số  y=f(x) Hàm số y=f'(x) có đồ thị như hình vẽ bên (ảnh 1)

Xem đáp án » 05/07/2022 1,603

Câu 7:

Cho hàm số \[y = f\left( x \right)\] xác định trên \[\mathbb{R}\]\[f\left( { - 3} \right) > 8,\;f\left( 4 \right) > \frac{9}{2},f\left( 2 \right) < \frac{1}{2}.\] Biết rằng hàm số \[y = f'\left( x \right)\] có đồ thị như hình vẽ. Số điểm cực trị của hàm số \[y = \left| {2f\left( x \right) - {{\left( {x - 1} \right)}^2}} \right|\]

Cho hàm số y=f(x)  xác định trên  R có  f(-3)>8 (ảnh 1)

Xem đáp án » 05/07/2022 1,394

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store