Cho hàm số \[y = f\left( x \right)\] liên tục và có đạo hàm trên đoạn \[\left[ { - \frac{1}{2};\frac{1}{2}} \right]\] thỏa mãn \[\int\limits_{\frac{{ - 1}}{2}}^{\frac{1}{2}} {\left[ {{f^2}\left( x \right) - 2f\left( x \right).\left( {3 - x} \right)} \right]{\rm{d}}x} = \frac{{ - 109}}{{12}}.\] Tính tích phân \[I = \int\limits_0^{\frac{1}{2}} {\frac{{f\left( x \right)}}{{{x^2} - 1}}{\rm{d}}x} .\]
Quảng cáo
Trả lời:
Đáp án B
Ta tính được \(\int\limits_{ - \frac{1}{2}}^{\frac{1}{2}} {{{\left( {3 - x} \right)}^2}d{\rm{x}}} = \frac{{ - 109}}{{12}}\).
Do đó \(\int\limits_{ - \frac{1}{1}}^{\frac{1}{2}} {\left[ {{f^2}\left( x \right) - 2f\left( x \right).\left( {3 - x} \right)} \right]d{\rm{x}}} = - \int\limits_{ - \frac{1}{2}}^{\frac{1}{2}} {{{\left( {3 - x} \right)}^2}d{\rm{x}}} \)
\( \Leftrightarrow \int\limits_{ - \frac{1}{2}}^{\frac{1}{2}} {{{\left[ {f\left( x \right) - \left( {3 - x} \right)} \right]}^2}d{\rm{x}}} = 0\)
\( \Leftrightarrow f\left( x \right) = 3 - x \Rightarrow I = \int\limits_0^{\frac{1}{2}} {\frac{{3 - x}}{{{x^2} - 1}}d{\rm{x}}} = \ln \frac{2}{9}\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \[\int {f\left( x \right){\rm{d}}x = - \frac{{{{\left( {3 - 5x} \right)}^5}}}{5}} + C.\]
B. \[\int {f\left( x \right){\rm{d}}x = - \frac{{{{\left( {3 - 5x} \right)}^5}}}{{25}}} + C.\]
Lời giải
Đáp án B
Ta có \(\int {f\left( x \right)d{\rm{x}}} = \int {{{\left( {3 - 5{\rm{x}}} \right)}^4}d{\rm{x}}} = \frac{1}{5}\int {{{\left( {5{\rm{x}} - 3} \right)}^4}d\left( {5{\rm{x}} - 3} \right)} = \frac{{\left( {5{\rm{x}} - {3^5}} \right)}}{{25}} + C\).
Lời giải
Đáp án C
Tập xác định: \(D = \mathbb{R}\).
Hàm số \(y = {x^3} - 3{{\rm{x}}^2} + 4\) liên tục và có đạo hàm trên đoạn \(\left[ { - 1;3} \right]\).
Đạo hàm: \(y' = 3{{\rm{x}}^2} - 6{\rm{x}}\).
Xét \(y' = 0 \Rightarrow 3{{\rm{x}}^2} - 6{\rm{x}} = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0 \in \left[ { - 1;3} \right]\\x = 2 \in \left[ { - 1;3} \right]\end{array} \right.\).
Ta có: \(y\left( { - 1} \right) = 0,{\rm{ y}}\left( 0 \right) = 4,{\rm{ y}}\left( 2 \right) = 0,{\rm{ y}}\left( 3 \right) = 4\).
Suy ra: \(M = \mathop {\max }\limits_{\left[ { - 1;3} \right]} y = 4,{\rm{ }}m = \mathop {\min }\limits_{\left[ { - 1;3} \right]} y = 0\) nên \(T = {M^2} - {m^2} = 16\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \[\left( R \right):5x + y - 7z - 1 = 0.\]
B. \[\left( R \right):x + 2y - z + 2 = 0.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

