Câu hỏi:
05/07/2022 355Trong không gian tọa độ Oxyz, cho mặt cầu \[\left( S \right)\] có tâm thuộc mặt phẳng \[\left( P \right):x + 2y + z - 7 = 0\] và đi qua hai điểm \[A\left( {1;{\mkern 1mu} 2;{\mkern 1mu} 1} \right),{\mkern 1mu} {\mkern 1mu} B\left( {2;{\mkern 1mu} 5;{\mkern 1mu} 3} \right).\] Bán kính nhỏ nhất của mặt cầu \[\left( S \right)\] bằng
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án B
Ta có: \(\overrightarrow {AB} = \left( {1;3;2} \right)\). Gọi H là trung điểm AB. Khi đó \(H\left( {\frac{3}{2};\frac{7}{2};2} \right)\).
Gọi I là tâm mặt cầu \(\left( S \right)\). Khi đó, ta có I thuộc mặt phẳng trung trực của đoạn AB.
Gọi \(\left( Q \right)\) là mặt phẳng trung trực của đoạn AB. Khi đó, \(\left( Q \right)\) sẽ nhận \(\overrightarrow {AB} = \left( {1;3;2} \right)\) làm vectơ pháp tuyến. Phương trình mặt phẳng \(\left( Q \right)\) là \(x + 3y + 2{\rm{z}} - 16 = 0\).
Gọi M là điểm thuộc giao tuyến của \(\left( P \right)\) và \(\left( Q \right)\). Tọa độ của M là nghiệm của hệ \(\left\{ \begin{array}{l}x + 2y + z - 7 = 0\\x + 3y + 2{\rm{z}} - 16 = 0\end{array} \right.\), chọn \(M\left( { - 11;9;0} \right)\).
Gọi d là giao tuyến của hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\). Khi đó, d có vectơ chỉ phương
\(\overrightarrow u = \left[ {\overrightarrow {{n_{\left( P \right)}}} ;\overrightarrow {{n_{\left( Q \right)}}} } \right] = \left( {1; - 1;1} \right)\).
Vậy phương trình của d là \(\left\{ \begin{array}{l}x = - 11 + t\\y = 9 - t\\z = t\end{array} \right.\).
Điểm I nằm trên giao tuyến của hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\), suy ra \(I\left( { - 11 + t;9 - t;t} \right)\).
Mặt cầu \(\left( S \right)\) có bán kính \(R = IA = \sqrt {{{\left( {t - 12} \right)}^2} + {{\left( {7 - t} \right)}^2} + {{\left( {t - 1} \right)}^2}} = \sqrt {3{{\left( {t - \frac{{20}}{3}} \right)}^2} + \frac{{182}}{3}} \ge \frac{{\sqrt {546} }}{3}\).
Vậy bán kính nhỏ nhất của mặt cầu \(\left( S \right)\) là \(\frac{{\sqrt {546} }}{3}\) khi và chỉ khi \(I\left( { - \frac{{13}}{3};\frac{7}{3};\frac{{20}}{3}} \right)\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tìm nguyên hàm của hàm số \[f\left( x \right) = {\left( {3 - 5x} \right)^4}.\]
Câu 2:
Tính diện tích S của phần hình phẳng gạch sọc (như hình vẽ bên dưới) giới hạn bởi đồ thị của hàm số bậc ba \[y = a{x^3} + b{x^2} + cx + d\] và trục hoành.
Câu 3:
Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \[y = {x^3} - 3{x^2} + 4\] trên đoạn \[\left[ { - 1;3} \right]\]. Giá trị của biểu thức \[P = {M^2} - {m^2}\] là
Câu 4:
Một hình trụ có bán kính đáy và chiều cao đều bằng 4 dm. Một hình vuông ABCD có hai cạnh AB và CD lần lượt là các dây cung của hai đường tròn đáy. Biết mặt phẳng (ABCD) không vuông góc với mặt đáy của hình trụ. Tính diện tích S của hình vuông \[ABCD.\]
Câu 5:
Cho số phức \[z = a + bi\left( {a,b \in \mathbb{R}} \right)\] thỏa mãn \[z + 7 + i - \left| z \right|\left( {2 + i} \right) = 0\] và \[\left| z \right| < 3.\] Tính giá trị \[P = a + b.\]
Câu 6:
Cho hàm số \[y = f\left( x \right).\] Hàm số \[y = f'\left( x \right)\] có đồ thị như hình vẽ bên. Bất phương trình \[3f\left( x \right) + {x^3} < a - 3x\ln x\] có nghiệm thuộc đoạn \[\left[ {1;2} \right]\] khi và chỉ khi
Câu 7:
Cho hàm số \[y = f\left( x \right)\] xác định trên \[\mathbb{R}\] có \[f\left( { - 3} \right) > 8,\;f\left( 4 \right) > \frac{9}{2},f\left( 2 \right) < \frac{1}{2}.\] Biết rằng hàm số \[y = f'\left( x \right)\] có đồ thị như hình vẽ. Số điểm cực trị của hàm số \[y = \left| {2f\left( x \right) - {{\left( {x - 1} \right)}^2}} \right|\] là
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
CÂU TRẮC NGHIỆM ĐÚNG SAI
Đề minh họa THPT Quốc gia môn Toán năm 2023 có đáp án
44 bài tập Đạo hàm và khảo sát hàm số có lời giải
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 3)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
30 đề thi THPT Quốc gia môn Toán năm 2022 có lời giải (đề 23)
về câu hỏi!