Câu hỏi:

05/07/2022 1,535 Lưu

Cho hàm số \[y = f\left( x \right)\]. Hàm số \[y = f'\left( x \right)\] có đồ thị là đường parabol như hình bên. Hàm số \[y = f\left( {1 - {x^2}} \right) + 2{x^2}\] nghịch biến trên khoảng nào dưới đây?

Cho hàm số y=f(x) . Hàm số  y=f'(x)  có đồ thị là đường parabol như hình bên.  (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Đối với bài toán này, khả năng cao chúng ta nên tìm rõ ràng hàm số parabol.

\(\left( P \right):y = k\left( {x - 1} \right)\left( {x - 2} \right);{\rm{ }}\left( {0;2} \right) \in \left( P \right) \Rightarrow 2 = 2k \Rightarrow k = 1 \Rightarrow y = {x^2} - 3{\rm{x}} + 2 = f'\left( x \right)\)

\(y = f\left( {1 - {x^2}} \right) + 2{{\rm{x}}^2} \Rightarrow y' = - 2{\rm{x}}f'\left( {1 - {x^2}} \right) + 4{\rm{x}} = - 2{\rm{x}}\left[ {\left( {1 - {x^2} - 1} \right)\left( {1 - {x^2} - 2} \right)} \right] + 4{\rm{x}}\)

\(y' = - 2{{\rm{x}}^3}\left( {{x^2} + 1} \right) + 4{\rm{x}} = - 2{\rm{x}}\left[ {{x^4} + {x^2} - 2} \right] = - 2{\rm{x}}\left( {{x^2} - 1} \right)\left( {{x^2} + 2} \right)\)

Khi đó \(y' < 0 \Leftrightarrow x > 1; - 1 < x < 0\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án B

Ta có \(\int {f\left( x \right)d{\rm{x}}} = \int {{{\left( {3 - 5{\rm{x}}} \right)}^4}d{\rm{x}}} = \frac{1}{5}\int {{{\left( {5{\rm{x}} - 3} \right)}^4}d\left( {5{\rm{x}} - 3} \right)} = \frac{{\left( {5{\rm{x}} - {3^5}} \right)}}{{25}} + C\).

Câu 2

Lời giải

Đáp án B

Dựa vào đồ thị suy ra \(y = a\left( {x + 2} \right){\left( {x - 1} \right)^2}\).

Do đồ thị hàm số đi qua điểm \(\left( {0;2} \right) \Rightarrow 2 = 2{\rm{a}} \Rightarrow a = 1\)

Khi đó \(S = \int\limits_{ - 2}^1 {\left( {x + 2} \right){{\left( {x - 1} \right)}^2}d{\rm{x}}} = \frac{{27}}{4}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP