Cho \[{z_1},{z_2}\] là hai trong các số phức thỏa mãn \[\left| {z - 3 + \sqrt {3i} } \right| = 2\] và \[\left| {{z_1} - {z_2}} \right| = 4.\] Giá trị lớn nhất của \[\left| {{z_1}} \right| + \left| {{z_2}} \right|\] bằng
Quảng cáo
Trả lời:
Đáp án A

Tập hợp điểm biểu diễn số phức z là đường tròn \(\left( C \right)\) tâm \(I\left( {3; - \sqrt 3 } \right),R = 2\). Gọi M, N lần lượt biểu diễn hai số phức \({z_1},{z_2}\) thì \(MN = \left| {{z_1} - {z_2}} \right| = 4 = 2{\rm{R}}\), suy ra MN là đường kính của \(\left( C \right)\).
Chú ý môđun mỗi số phức chính là các khoảng cách OM, ON.
Áp dụng bất đẳng thức Bunyakovsky kết hợp công thức trung tuyến tam giác OMA ta có:
\(\left| {{z_1}} \right| + \left| {{z_2}} \right| = OM + ON \le \sqrt {2\left( {O{M^2} + O{N^2}} \right)} = \sqrt {4{\rm{O}}{I^2} + M{N^2}} = 8\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \[\int {f\left( x \right){\rm{d}}x = - \frac{{{{\left( {3 - 5x} \right)}^5}}}{5}} + C.\]
B. \[\int {f\left( x \right){\rm{d}}x = - \frac{{{{\left( {3 - 5x} \right)}^5}}}{{25}}} + C.\]
Lời giải
Đáp án B
Ta có \(\int {f\left( x \right)d{\rm{x}}} = \int {{{\left( {3 - 5{\rm{x}}} \right)}^4}d{\rm{x}}} = \frac{1}{5}\int {{{\left( {5{\rm{x}} - 3} \right)}^4}d\left( {5{\rm{x}} - 3} \right)} = \frac{{\left( {5{\rm{x}} - {3^5}} \right)}}{{25}} + C\).
Lời giải
Đáp án C
Tập xác định: \(D = \mathbb{R}\).
Hàm số \(y = {x^3} - 3{{\rm{x}}^2} + 4\) liên tục và có đạo hàm trên đoạn \(\left[ { - 1;3} \right]\).
Đạo hàm: \(y' = 3{{\rm{x}}^2} - 6{\rm{x}}\).
Xét \(y' = 0 \Rightarrow 3{{\rm{x}}^2} - 6{\rm{x}} = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0 \in \left[ { - 1;3} \right]\\x = 2 \in \left[ { - 1;3} \right]\end{array} \right.\).
Ta có: \(y\left( { - 1} \right) = 0,{\rm{ y}}\left( 0 \right) = 4,{\rm{ y}}\left( 2 \right) = 0,{\rm{ y}}\left( 3 \right) = 4\).
Suy ra: \(M = \mathop {\max }\limits_{\left[ { - 1;3} \right]} y = 4,{\rm{ }}m = \mathop {\min }\limits_{\left[ { - 1;3} \right]} y = 0\) nên \(T = {M^2} - {m^2} = 16\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \[\left( R \right):5x + y - 7z - 1 = 0.\]
B. \[\left( R \right):x + 2y - z + 2 = 0.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

