Câu hỏi:

05/07/2022 2,120 Lưu

Từ một tấm tôn dạng hình tam giác vuông với hai cạnh góc vuông bằng \[3m\]\[4m,\] một anh thợ cần cắt một tấm tôn có dạng hình chữ nhật nội tiếp tam giác trên. Anh ta gò tấm tôn hình chữ nhật này thành một hình trụ không đáy (như hình vẽ) để đổ thóc vào trong. Thể tích lớn nhất của khối trụ thu được gần nhất với kết quả nào dưới đây?

Từ một tấm tôn dạng hình tam giác vuông với hai cạnh góc vuông bằng  (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Từ một tấm tôn dạng hình tam giác vuông với hai cạnh góc vuông bằng  (ảnh 2)

Khối trụ thu được có thể tích là \[V = \pi {R^2}h\].

\[\begin{array}{l}\Delta BQM\~\Delta BAC \Rightarrow \frac{{QM}}{{AC}} = \frac{{BQ}}{{BA}} \Rightarrow \frac{h}{4} = \frac{{BQ}}{3} \Rightarrow BQ = \frac{{3h}}{4}.\\\Delta CPN\~\Delta CAB \Rightarrow \frac{{PN}}{{AB}} = \frac{{CP}}{{CA}} \Rightarrow \frac{h}{4} = \frac{{CP}}{3} \Rightarrow CP = \frac{{4h}}{3}.\end{array}\]

Do đó \[PQ = BC - BQ - CP = 5 - \frac{{3h}}{4} - \frac{{4h}}{3} = 5 - \frac{{25h}}{{12}} = \frac{{60 - 25h}}{{12}}\].

\[2R\pi = PQ \Rightarrow R = \frac{{60 - 25h}}{{24\pi }} \Rightarrow V = \pi {\left( {\frac{{60 - 25h}}{{24\pi }}} \right)^2}h = \frac{{h{{\left( {25h - 60} \right)}^2}}}{{{{24}^2}\pi }} = f\left( h \right)\].

\[f'\left( h \right) = \frac{{{{\left( {25h - 60} \right)}^2} + h.2\left( {25h - 60} \right).25}}{{{{24}^2}\pi }} = 0 \Rightarrow h = \frac{4}{5} \Rightarrow V \le f\left( {\frac{4}{5}} \right) \approx 0,71\;{m^3}.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án C

Ta có \[\begin{array}{l}C\left( {5;{{\log }_b}5} \right),B\left( {5;{{\log }_a}5} \right),A\left( {5;0} \right);\overrightarrow {CB} = 2\overrightarrow {BA} \Rightarrow {\log _a}5 - {\log _b}5 = 2\left( { - {{\log }_a}5} \right)\\ \Rightarrow 3{\log _a}5 = {\log _b}5 \Rightarrow \frac{3}{{{{\log }_5}a}} = \frac{1}{{{{\log }_5}b}} \Rightarrow {\log _5}a = 3{\log _5}b = {\log _5}{b^3} \Rightarrow a = {b^3}.\end{array}\]

Câu 2

Lời giải

Đáp án D

Gọi \[M = d \cap d'\], ta có \[d':\left\{ \begin{array}{l}x = 2 + t\\y = - 1 - t\\z = 1 + t\end{array} \right.\;\left( {t \in \mathbb{R}} \right) \Rightarrow M\left( {t + 2; - t - 1;t + 1} \right)\].

Đường thẳng d qua \[A\left( {1; - 1;3} \right)\] và nhận \[\overrightarrow {AM} = \left( {t + 1; - t;t - 2} \right)\] là một VTCP.

Mặt phẳng \[\left( P \right):x + 4y - 2z + 1 = 0\] nhận \[\overrightarrow n = \left( {1;4; - 2} \right)\] là một VTPT.

Ta có \[d//\left( P \right) \Leftrightarrow \left\{ \begin{array}{l}\overrightarrow {AM} .\overrightarrow n = 0\\A \notin \left( P \right)\end{array} \right. \Leftrightarrow \left( {t + 1} \right) - 4t - 2\left( {t - 2} \right) = 0 \Leftrightarrow t = 1 \Rightarrow \overrightarrow {AM} = \left( {2; - 1; - 1} \right)\].

Đường thẳng d qua \[A\left( {1; - 1;3} \right)\] và nhận \[\overrightarrow {AM} = \left( {2; - 1; - 1} \right)\] là một VTCP

\[ \Rightarrow d:\frac{{x - 1}}{2} = \frac{{y + 1}}{{ - 1}} = \frac{{z - 3}}{{ - 1}}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP