Câu hỏi:

19/08/2025 1,132 Lưu

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, tâm O, cạnh  BC = a, SA = SB = SC = SD = 2a . Gọi K là hình chiếu vuông góc của B trên AC, H là hình chiếu vuông góc của K trên SA.

a) Chứng minh: SO ^ (ABCD).

b) Tính cosin góc giữa đường thẳng SB và mặt phẳng (BKH).

 

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a)

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, tâm  (ảnh 1)

+ Xét tam giác SAC có SA = SC = 2a nên tam giác SAC cân tại S, có O là trung điểm của AC nên SO là đường trung tuyến và cũng là đường cao của tam giác SAC

Suy ra SO ^ AC (1)

+ Xét tam giác SAC có SB = SD = 2a nên tam giác SBD cân tại S, có O là trung điểm của BD nên SO là đường trung tuyến và cũng là đường cao của tam giác SBD

Suy ra SO ^ BD (2)

Từ (1) và (2) nên ta có SO ^ (ABCD)

b) Ta có:

Từ đó suy ra BK ^ SH

Mà KH ^ SH

Nên ta có SH ^ (BKH) Þ (SB, (BKH)) = (SB, HB) = a

Ta cũng suy ra được SH ^ BH

cosSBA^=SB2+BA2SA22.SB.BA=2a2+a222a22.2a.a2=24sinSBA^=1cosSBA^2=144

Ta có:

SSAB=12SB.AB.sinSBA^=12HB.ASHB=SB.AB.sinSBA^SA=2a.a2.1442a=a72cosα=HBSB=a722a=74.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. PQ=BC+AD;

B. PQ=12BC+AD;

C. PQ=12BCAD;

D. PQ=14BC+AD.

Lời giải

Cho tứ diện ABCD. Gọi P, Q là trung điểm của AB và CD. Chọn khẳng định đúng? (ảnh 1)

Câu 2

A.AB+AD+AA'=AC';

B. BC+CD+BB'=BD';

C. CB+CD+DD'=CA';

D. AD+AB+AA'=A'C.

Lời giải

Cho hình hộp ABCD.A’B’C’D’. Đẳng thức nào sau đây là sai? (ảnh 1)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. x = -1;

B. x = 1;
C. x = -2;
D. x = 2.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. (-2; 0);

B. (0; 2);
C. (2; 4);
D. (-¥; +¥).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP