Câu hỏi:

13/07/2024 3,099

Chứng minh phương trình: (1 - m2)(x + 1)3 + x2 - x - 3 = 0 có nghiệm với mọi m.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đặt f (x) = (1 - m2)(x + 1)3 + x2 - x - 3 = 0 liên tục trên ℝ

Ta có:

+ f (0) = (1 - m2) - 3 = -2 - m2 < 0 ("m Î ℝ)

+ f (-2) = - (1 - m2) + (-2)2 - (-2) - 3

= m2  - 1 + 4 + 2 - 3 = m2 + 2 > 0 ("m Î ℝ)

Xét f (-2). f (0) = (m2 + 2).(-2 - m2) = - (m2 + 2)2 < 0 ("m Î ℝ)

Nên suy ra phương trình f (x) = 0 có ít nhất một nghiệm thuộc khoảng (-2; 0)

Từ đây có thể kết luận được phương trình: (1 - m2)(x + 1)3 + x2 - x - 3 = 0 có nghiệm với mọi m.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Cho tứ diện ABCD. Gọi P, Q là trung điểm của AB và CD. Chọn khẳng định đúng? (ảnh 1)

Câu 2

Lời giải

Cho hình hộp ABCD.A’B’C’D’. Đẳng thức nào sau đây là sai? (ảnh 1)

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP