Câu hỏi:

08/07/2022 264

Tìm tất cả các giá trị của a để bất phương trình ax2 – x + a ≥ 0, \(\forall x \in \mathbb{R}\)

Đáp án chính xác

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

ax2 – x + a ≥ 0, \(\forall x \in \mathbb{R}\) \( \Leftrightarrow \left\{ \begin{array}{l}a > 0\\\Delta = {\left( { - 1} \right)^2} - 4.a.a \le 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a > 0\\1 - 4{a^2} \le 0\end{array} \right.\)

Xét tam thức bậc hai f(a) = 1 – a2, có ∆ = 02 – 4.(-4).1 = 16 > 0. Do đó f(a) có hai nghiệm phân biệt \(a = \frac{1}{2}\)\(a = - \frac{1}{2}\)

Ta có bảng xét dấu

Tìm tất cả các giá trị của a để bất phương trình ax^2 – x + a ≥ 0 (ảnh 1)

Dựa vào bảng xét dấu ta có 1 – 4a2 ≤ 0 \( \Leftrightarrow a \in \left( { - \infty ; - \frac{1}{2}} \right] \cup \left[ {\frac{1}{2}; + \infty } \right)\).

Kết hợp với điều kiện a > 0 suy ra a \(\left[ {\frac{1}{2}; + \infty } \right)\).

Vậy để ax2 – x + a ≥ 0, \(\forall x \in \mathbb{R}\) thì a \(\left[ {\frac{1}{2}; + \infty } \right)\) hay a ≥ \(\frac{1}{2}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Các giá trị m làm cho biểu thức f(x) = x2 + 4x + m – 5 luôn dương là:

Xem đáp án » 07/07/2022 10,727

Câu 2:

Để f(x) = x2 + (m + 1)x +2m + 7 > 0 với mọi x thì

Xem đáp án » 08/07/2022 5,091

Câu 3:

Cho bất phương trình 2x2 – 4x + m + 5 > 0. Tìm m để bất phương trình đúng \(\forall x \ge 3\)?

Xem đáp án » 08/07/2022 5,013

Câu 4:

Tam thức y = x2 – 12x – 13 nhận giá trị âm khi và chỉ khi

Xem đáp án » 07/07/2022 4,524

Câu 5:

Cho hàm số f(x) = mx2 – 2mx + m + 1. Giá trị của m để f(x) > 0, \(\forall x \in \mathbb{R}\).

Xem đáp án » 07/07/2022 3,189

Câu 6:

Phương trình x2 – 2(m – 1)x + m – 3 = 0 có hai nghiệm trái dấu nhau khi và chỉ khi

Xem đáp án » 07/07/2022 1,924

Câu 7:

Tam thức nào sau đây nhận giá trị âm với mọi x < 2 

Xem đáp án » 08/07/2022 877

Bình luận


Bình luận