Tìm tất cả các giá trị thực của tham số m để bất phương trình
f(x) = (m – 3)x2 + (m + 2)x – 4 > 0 vô nghiệm
Tìm tất cả các giá trị thực của tham số m để bất phương trình
f(x) = (m – 3)x2 + (m + 2)x – 4 > 0 vô nghiệm
A. \[\left[ \begin{array}{l}m \le - 22\\m \ge 2\end{array} \right.\];
B. – 22 ≤ m ≤ 2;
C. – 22 < m < 2;
D. \[\left[ \begin{array}{l} - 22 \le m \le 2\\m = 3\end{array} \right.\].
Quảng cáo
Trả lời:

Đáp án đúng là: B
Ta có f(x) > 0 vô nghiệm \( \Leftrightarrow f\left( x \right) \le 0\,\,\forall x \in \mathbb{R}\).
Xét m = 3 ta có f(x) = 5x – 4 với \(x > \frac{4}{5}\) thì f(x) > 0 nên m = 3 không thỏa mãn.
Xét m ≠ 3 ta có \(f\left( x \right) \le 0\,\,\forall x \in \mathbb{R}\)\( \Leftrightarrow \left\{ \begin{array}{l}a = m - 3 < 0\\\Delta = {m^2} + 20m - 44 \le 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}m < 3\\{m^2} + 20m - 44 \le 0\end{array} \right.\)
Xét tam thức bậc hai (biến m): m2 + 20m – 44 có ∆’ = 102 – (-44) = 144 > 0. Do đó tam thức có hai nghiệm phân biệt x = -22 và x = 2.
Ta có bảng xét dấu
Để \(f\left( x \right) \le 0\,\,\forall x \in \mathbb{R} \Leftrightarrow \left\{ \begin{array}{l}m < 3\\ - 22 \le m \le 2\end{array} \right. \Leftrightarrow - 22 \le m \le 2\)
Vậy đáp án đúng là B.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. m < 9;
B. m ≥ 9;
C. m > 9;
D. \[m \in \emptyset \].
Lời giải
Đáp án đúng là: C
Ta có: f(x) = x2 + 4x + m – 5 luôn luôn dương \[ \Leftrightarrow \] x2 + 4x + m – 5 > 0 với mọi x \[ \in \]ℝ
\[ \Leftrightarrow \left\{ \begin{array}{l}a = 1 > 0\\\Delta ' = {2^2} - (m - 5) < 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1 > 0\\m > 9\end{array} \right.\].
Vậy đáp án đúng là C.
Câu 2
A. – 3 ≤ m ≤ 9;
B. \(\left[ \begin{array}{l}m < - 3\\m > 9\end{array} \right.\).
C. – 3 < m < 9;
D. \(\left[ \begin{array}{l}m \le - 3\\m \ge 9\end{array} \right.\).
Lời giải
Đáp án đúng là: C
Ta có f(x) > 0 với
Xét tam thức bậc hai f(m) = m2 – 6m – 27, có ∆’ = 9 – (-27) = 36 > 0. Do đó f(m) có hai nghiệm phân biệt là m = -3 và m = 9.
Ta có bảng xét dấu
Dựa vào bảng xét dấu để ∆ < 0 thì – 3 < m < 9.
Vậy đáp án đúng là C.
Câu 3
A. \[\left[ \begin{array}{l}x < --13\\x > 1\end{array} \right.\];
B. \[\left[ \begin{array}{l}x < --1\\x > 13\end{array} \right.\];
C. – 13 < x < 1;
D. – 1 < x < 13.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. m ≥ – 11;
D. m < 11.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. m ≥ 0;
B. m > 0;
C. m < 0;
D. m ≤ 0.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. m < 3;
B. m < 1;
C. m = 1;
D. 1 < m < 3.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. y = x2 – 5x + 6 ;
B. y = 16 – x2 ;
C. y = x2 – 2x + 3;
D. y = – x2 + 5x – 6.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.