Câu hỏi:

13/07/2022 1,302 Lưu

Tam giác ABC có A^=68°12',B^=34°44', AB = 117. Độ dài cạnh AC là khoảng:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

Xét tam giác ABC có A^=68°12',B^=34°44', ta có:

A^+B^+C^=180° (định lí tổng ba góc trong tam giác)

C^=180°A^B^ 

C^=180°68°12'34°44'=77°4'.

Áp dụng định lí sin trong tam giác ABC ta có: ACsinB=ABsinC

AC=AB.sinBsinC=117.sin34°44'sin77°4'68. 

Vậy AC ≈ 68.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Xét tam giác ABC có A^=40°,B^=60°, ta có:

A^+B^+C^=180° (định lí tổng ba góc trong tam giác)

C^=180°A^B^ 

C^=180°40°60°=80°.

Theo định lí sin ta có: BCsinA=ABsinC

BC=AB.sinAsinC=5.sin40°sin80°3,3 

Vậy BC ≈ 3,3.

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Diện tích tam giác ABC là: S=12.AB.AC.sinAsinA=2SAB.AC

sinA=2.125.8=35A^36°52'  (vì góc A là góc nhọn)

Xét tam giác ABC có AB = 5, AC = 8 và A^36°52', áp dụng định lí côsin ta có:

BC2 = AB2 + AC2 – 2.AB.AC.cosA

BC2 ≈ 52 + 82 – 2.5.8.cos36°52' ≈ 25

Þ BC ≈ 5.

Vậy BC ≈ 5.

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP