Câu hỏi:

13/07/2022 540 Lưu

Tam giác ABC vuông tại B. Trên cạnh AC lấy hai điểm M, N sao cho các góc ABM^, MBN^, NBC^ bằng nhau. Đặt AB = q, BC = m, BM = x, BN = y. Trong các hệ thức sau, hệ thức nào đúng?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: C

Tam giác ABC vuông tại B. Trên cạnh AC lấy hai điểm M, N sao cho các góc (ảnh 1)

Ta có ABM^=MBN^=NBC^=ABC^3=90°3=30° 

ABN^=MBC^=60° 

Áp dụng định lí côsin cho tam giác ABM ta có:

AM2 = AB2 + BM2 – 2.AB.BM.cosABM^ 

Þ AM2 = q2 + x2 – 2.q.x.cos30°

AM2=q2+x22.q.x.32=q2+x2qx3.      (1)

Do đó phương án B là mệnh đề sai.

Áp dụng định lí côsin cho tam giác ABN ta có:

AN2 = AB2 + BN2 – 2.AB.BN.cosABN^ 

Þ AN2 = q2 + y2 – 2.q.y.cos60°

AN2=q2+y22.q.y.12=q2+y2qy.    (2)

Do đó phương án C là mệnh đề đúng.

Từ (1) và (2) suy ra AM2 ≠ AN2 nên phương án A là mệnh đề sai.

Tam giác ABC vuông tại B nên AC2 = AB2 + BC2 = q2 + m2.

Do đó phương án D là mệnh đề sai.

Vậy ta chọn phương án C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Xét tam giác ABC có A^=40°,B^=60°, ta có:

A^+B^+C^=180° (định lí tổng ba góc trong tam giác)

C^=180°A^B^ 

C^=180°40°60°=80°.

Theo định lí sin ta có: BCsinA=ABsinC

BC=AB.sinAsinC=5.sin40°sin80°3,3 

Vậy BC ≈ 3,3.

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Diện tích tam giác ABC là: S=12.AB.AC.sinAsinA=2SAB.AC

sinA=2.125.8=35A^36°52'  (vì góc A là góc nhọn)

Xét tam giác ABC có AB = 5, AC = 8 và A^36°52', áp dụng định lí côsin ta có:

BC2 = AB2 + AC2 – 2.AB.AC.cosA

BC2 ≈ 52 + 82 – 2.5.8.cos36°52' ≈ 25

Þ BC ≈ 5.

Vậy BC ≈ 5.

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP