Câu hỏi:

13/07/2024 4,226

Cho hàm số f(x) có đạo hàm liên tục trên tập hợp  thỏa mãn 12f(3x6)dx = 3 và f(−3) = 2. Tính tích phân 30xf'(x)dx.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đặt t = 3x – 6 Û dt = 3dx

Đổi cận :

Cho hàm số f(x) có đạo hàm liên tục trên tập hợp R thỏa mãn tích phân từ 1 đến 2 f(3x-6)dx = 3 (ảnh 1)

 Do đó: 12f(3x6)dx=12f(3x6)dx=1330f(t)dt = 3

Þ 30f(t)dt=930f(x)dx=9

Đặt u=xdv=f'(x)dxdu=dxv=f(x)

Do đó: 30xf'(x)dx=xf(x)3030f(x)dx 

= 0.f(0) + 3.f(−3) – 9 = −3.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: D

132f(x)+1dx=213f(x)dx+131dx= 5

Û 213f(x)dx + x13 = 5

Û 213f(x)dx = 3

13f(x)dx = 32.

Câu 2

Lời giải

Đáp án đúng là: A

x+2x1dx=x1+3x1=1+3x1dx 

= x + 3ln(x – 1) + C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP