Cho hàm số y = f (x) có đạo hàm liên tục trên đoạn [0; 3] thỏa = 10 và f(3) = 3. Tính .
Quảng cáo
Trả lời:
Đặt = t (t > 0) => x = t2 => dx = 2tdt
Đổi cận:
![Cho hàm số y = f (x) có đạo hàm liên tục trên đoạn [0; 3] thỏa tích phân từ 0 đến 3 f(x)dx= 10 và f(3) = 3. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2022/07/blobid0-1658212165.png)
= 2. = 2.
Đặt u = x => du = dx
dv = f '(x) dx => v = f (x) + C
Chọn C = 0 => v = f (x)
= 3. f (3) – 0. f (0) – 10
= 3.3 – 10 = – 1
Do đó = 2. = 2. (–1) = – 2.
Vậy = – 2.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là C
Phương trình mặt phẳng song song với mặt phẳng (P) nên có dạng:
2x – y + 3z + d = 0 (1)
Mặt phẳng đó đi qua điểm A (2; –1; 2) nên thay tọa độ điểm A vào (1) ta được:
2.2 – (–1) + 3.2 + d = 0 => d = –11
Vậy phương trình mặt phẳng cần tìm là: 2x – y + 3z – 11 = 0.
Lời giải
Đáp án đúng là B
Mặt cầu có tâm I (–1; 2; –3) nên phương trình mặt cầu có dạng là:
(x + 1)2 + (y – 2)2 + (z + 3)2 = R2 (1)
Vì mặt cầu đi qua điểm A (2; 0; 0) nên thay tọa độ điểm A vào (1) ta được:
(2 + 1)2 + (0 – 2)2 + (0 + 3)2 = R2 => R2 = 22
Vậy phương trình mặt cầu là: (x + 1)2 + (y – 2)2 + (z + 3)2 = 22.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.