Câu hỏi:

24/07/2022 254 Lưu

Xét các số thực \[a,{\rm{ }}b\] thỏa mãn điều kiện \[\frac{1}{3} < b < a < 1\]. Tìm giá trị nhỏ nhất của biểu thức \[P = {\log _a}\left( {\frac{{3b - 1}}{4}} \right) + 12\log _{\frac{b}{a}}^2a - 3.\]

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Ta có \[\frac{{3b - 1}}{4} \le {b^3} \Leftrightarrow 4{b^3} - 3b + 1 \ge 0 \Leftrightarrow \left( {b + 1} \right)\left( {4{b^2} - 4b + 1} \right) \ge 0\]

\[ \Leftrightarrow \left( {b + 1} \right){\left( {2b - 1} \right)^2} \ge 0\] luôn đúng với \[\frac{1}{3} < b < 1.\]

\[ \Rightarrow {\log _a}\left( {\frac{{3b - 1}}{4}} \right) \ge {\log _a}{b^3}\] (vì \[a < 1\]) \[ \Rightarrow {\log _a}\left( {\frac{{3b - 1}}{4}} \right) \ge 3{\log _a}b\].

Biến đổi \[{\log _{\frac{b}{a}}}a = \frac{1}{{{{\log }_a}\frac{b}{a}}} = \frac{1}{{{{\log }_a}b - 1}}\]

\[ \Rightarrow P \ge 3{\log _a}b + \frac{{12}}{{{{\left( {{{\log }_a}b - 1} \right)}^2}}} - 3 = 3\left( {{{\log }_a}b - 1} \right) + \frac{{12}}{{{{\left( {{{\log }_a}b - 1} \right)}^2}}}\].

Bài ra \[\frac{1}{3} < b < a < 1 \Rightarrow {\log _a}b > 1\].

Đặt \[t = {\log _a}b - 1 > 0 \Rightarrow P \ge 3t + \frac{{12}}{{{t^2}}} = \frac{{3t}}{2} + \frac{{3t}}{2} + \frac{{12}}{{{t^2}}} \ge 3.\sqrt {\frac{{3t}}{2}.\frac{{3t}}{2}.\frac{{12}}{{{t^2}}}} = 9\].

Dấu “=” xảy ra \[\left\{ \begin{array}{l}b = \frac{1}{2}\\\frac{{3t}}{2} = \frac{{12}}{{{t^2}}}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = \frac{1}{2}\\t = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = \frac{1}{2}\\b = {a^3}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = \frac{1}{2}\\a = \frac{1}{{\sqrt[3]{2}}}\end{array} \right.\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án D

Thể tích của bể là \[V = 3ab = 72 \Rightarrow ab = 24\].

Để bể cá tốn ít nguyên liệu nhất thì tổng diện tích S của bốn mặt bên, mặt đáy, tấm kính ở giữa phải nhỏ nhất.

Ta có \[S = 2.3a + 2.3b + ab + 3a = ab + 9a + 6b \ge ab + 2\sqrt {9a.6b} = 24 + 2\sqrt {54.24} = 96\].

Dấu “=” xảy ra \[ \Leftrightarrow \left\{ \begin{array}{l}ab = 24\\9a = 6b > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 4\\b = 6\end{array} \right.\].

Câu 2

Lời giải

Đáp án D

Tính thể tích của khối lập phương ABCD.A'B'C'D' biết AC' = 2a căn 3  (ảnh 1)

Ta có \[AC{'^2} = A{C^2} + CC{'^2} = A{B^2} + B{C^2} + CC{'^2} = 3A{B^2}\].

\[\begin{array}{l} \to AB\sqrt 3 = AC' = 2a\sqrt 3 \Rightarrow AB = 2a.\\ \Rightarrow {V_{ABCD.A'B'C'D'}} = A{B^3} = 8{a^3}.\end{array}\]

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP