Cho hàm số \[y = f\left( x \right)\] có đạo hàm tại \[x = 1\] và \[f'\left( 1 \right) \ne 0.\] Gọi \[{d_1}\], \[{d_2}\] lần lượt là hai tiếp tuyến của đồ thị hàm số \[y = f\left( x \right)\] và \[y = g\left( x \right) = x.f\left( {2x - 1} \right)\] tại điểm có hoành độ \[x = 1.\] Biết rằng hai đường thẳng \[{d_1}\], \[{d_2}\] vuông góc với nhau. Khẳng định nào sau đây đúng?
Quảng cáo
Trả lời:
Đáp án C
Ta có \[g'\left( x \right) = f\left( {2x - 1} \right) + 2x.f'\left( {2x - 1} \right) \Rightarrow g'\left( x \right) = f\left( 1 \right) + 2f'\left( 1 \right)\].
\[{d_1}\] có hệ số góc là \[f'\left( 1 \right)\] và \[{d_2}\] có hệ số góc là \[g'\left( 1 \right) = f\left( 1 \right) + 2f'\left( 1 \right)\].
Mà \[{d_1} \bot {d_2} \Rightarrow f'\left( 1 \right).g'\left( 1 \right) = - 1 \Leftrightarrow f'\left( 1 \right).\left[ {f\left( 1 \right) + 2f'\left( 1 \right)} \right] = - 1\].
\[\begin{array}{l} \Rightarrow f\left( 1 \right) = \frac{{ - 2{{\left[ {f'\left( 1 \right)} \right]}^2} - 1}}{{f'\left( 1 \right)}}\\ \Rightarrow \left| {f\left( 1 \right)} \right| = \left| {\frac{{2{{\left[ {f'\left( 1 \right)} \right]}^2} + 1}}{{f'\left( 1 \right)}}} \right| = \frac{{2{{\left[ {f'\left( 1 \right)} \right]}^2} + 1}}{{\left| {f'\left( 1 \right)} \right|}} \ge \frac{{2\sqrt {2{{\left[ {f'\left( 1 \right)} \right]}^2}.1} }}{{\left| {f'\left( 1 \right)} \right|}} = 2\sqrt 2 .\end{array}\]
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án D
Thể tích của bể là \[V = 3ab = 72 \Rightarrow ab = 24\].
Để bể cá tốn ít nguyên liệu nhất thì tổng diện tích S của bốn mặt bên, mặt đáy, tấm kính ở giữa phải nhỏ nhất.
Ta có \[S = 2.3a + 2.3b + ab + 3a = ab + 9a + 6b \ge ab + 2\sqrt {9a.6b} = 24 + 2\sqrt {54.24} = 96\].
Dấu “=” xảy ra \[ \Leftrightarrow \left\{ \begin{array}{l}ab = 24\\9a = 6b > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 4\\b = 6\end{array} \right.\].
Lời giải
Đáp án D

Ta có \[AC{'^2} = A{C^2} + CC{'^2} = A{B^2} + B{C^2} + CC{'^2} = 3A{B^2}\].
\[\begin{array}{l} \to AB\sqrt 3 = AC' = 2a\sqrt 3 \Rightarrow AB = 2a.\\ \Rightarrow {V_{ABCD.A'B'C'D'}} = A{B^3} = 8{a^3}.\end{array}\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.