Trong không gian Oxyz, cho mặt cầu \[\left( S \right):{\left( {x - 3} \right)^2} + {\left( {y - 2} \right)^2} + {z^2} = 4\] và hai điểm \[A\left( { - 1;2;0} \right),{\rm{ }}B\left( {2;5;0} \right).\] Điểm \[K\left( {a;b;c} \right)\] thuộc \[\left( S \right)\] sao cho \[KA + 2KB\] nhỏ nhất. Tính giá trị của \[a - b + c.\]
Quảng cáo
Trả lời:
Đáp án B
Mặt cầu \[\left( S \right)\] có tâm \[I\left( {3;2;0} \right)\] và bán kính \[R = 2\].

Ta có \[\overrightarrow {AI} = \left( {4;0;0} \right) \Rightarrow AI = 4 \Rightarrow AI = 2IK \Rightarrow \frac{{IA}}{{IK}} = 2\].
Trên đoạn thẳng AI lấy điểm C sao cho \[IC = 1 \Rightarrow C\] cố định.
Ta có \[\begin{array}{l}IC.IA = 1.4 = 4 = I{K^2} \Rightarrow \Delta ICK\~\Delta IKA\\ \Rightarrow \frac{{CK}}{{KA}} = \frac{{IK}}{{IA}} = \frac{1}{2} \Rightarrow KA = 2KC\end{array}\]
\[ \Rightarrow KA + 2KB = 2\left( {KC + KB} \right) \ge 2BC\] (không đổi).
Dấu “=” xảy ra \[ \Leftrightarrow K = BC \cap \left( S \right)\] và K ở giữa B và C.
Ta có \[\overrightarrow {IA} = 4\overrightarrow {IC} \Rightarrow C\left( {2;2;0} \right)\].
Đường thẳng BC qua \[C\left( {2;2;0} \right)\] và nhận \[\overrightarrow {CB} = \left( {0;3;0} \right)\] là một VTCP.
\[ \Rightarrow BC:\left\{ \begin{array}{l}x = 2\\y = 2 + 2t\\z = 0\end{array} \right. \Rightarrow K\left( {2;2t + 2;0} \right)\].
Ép cho \[K \in \left( S \right) \Rightarrow 1 + 4{t^2} = 4 \Rightarrow t = \pm \frac{{\sqrt 3 }}{2} \Rightarrow \left[ \begin{array}{l}K\left( {2;2 + \sqrt 3 ;0} \right)\\K\left( {2;2 - \sqrt 3 ;0} \right)\end{array} \right.\].
Mà K ở giữa B và C \[ \Rightarrow K\left( {2;2 + \sqrt 3 ;0} \right)\].
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án D
Thể tích của bể là \[V = 3ab = 72 \Rightarrow ab = 24\].
Để bể cá tốn ít nguyên liệu nhất thì tổng diện tích S của bốn mặt bên, mặt đáy, tấm kính ở giữa phải nhỏ nhất.
Ta có \[S = 2.3a + 2.3b + ab + 3a = ab + 9a + 6b \ge ab + 2\sqrt {9a.6b} = 24 + 2\sqrt {54.24} = 96\].
Dấu “=” xảy ra \[ \Leftrightarrow \left\{ \begin{array}{l}ab = 24\\9a = 6b > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 4\\b = 6\end{array} \right.\].
Lời giải
Đáp án D

Ta có \[AC{'^2} = A{C^2} + CC{'^2} = A{B^2} + B{C^2} + CC{'^2} = 3A{B^2}\].
\[\begin{array}{l} \to AB\sqrt 3 = AC' = 2a\sqrt 3 \Rightarrow AB = 2a.\\ \Rightarrow {V_{ABCD.A'B'C'D'}} = A{B^3} = 8{a^3}.\end{array}\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.