Câu hỏi:

27/07/2022 1,033

Cho tứ giác ABCD có BC = AD Gọi M, N, P lần lượt là trung điểm AC, CD, DB. Chứng minh ΔMNP cân

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tứ giác ABCD có BC = AD Gọi M, N, P lần lượt là trung điểm AC, CD, DB. Chứng minh tam giác MNP cân (ảnh 1)

ΔACDM là trung điểm AC, N là trung điểm CD => MN là đường trung bình ΔACD

MN=12BC(1)

Chứng minh tương tự PN  là đường trung bình ΔDCBPN=12AD

Mà AD=BC  (3)

Từ (1), (2), (3) MN=PNΔMNP cân tại N

Hà Linh

Hà Linh

vẽ hình sai rồi:))

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

xy3=x33x2y+3xy2y3

Lời giải

Ta có: x3+y3+z3

=x+y33xyx+y+z3=x+y3+z33xy.z(dox+y+z=0x+y=z)=x+y+zx+y2x+yz+z2+3xyz=3xyzdo  x+y+z=0

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP