Bài tập cuối chương 1
74 người thi tuần này 4.6 15.8 K lượt thi 8 câu hỏi
🔥 Đề thi HOT:
31 câu Trắc nghiệm Toán 6 Kết nối tri thức Bài 1: Tập hợp có đáp án
10 Bài tập Các bài toán thực tế về số nguyên âm (có lời giải)
13 Bài tập Một số bài toán thực tế về hình vuông, hình chữ nhật (có lời giải)
Đề kiểm tra giữa kì 1 Toán 6 Cánh diều có đáp án (Đề 1)
13 Bài tập Tính chu vi và diện tích của hình bình hành, hình thang cân (có lời giải)
10 Bài tập Ứng dụng bội chung và bội chung nhỏ nhất để giải các bài toán thực tế (có lời giải)
Danh sách câu hỏi:
Lời giải
a) 4 . 25 – 12 . 5 + 170 : 10
= 100 – 60 + 17
= 40 + 17
= 57.
b) (7 + 33 : 32) . 4 – 3
= (7 + 33 – 2) . 4 – 3
= (7 + 31) . 4 – 3
= (7 + 3) . 4 – 3
= 10 . 4 – 3
= 40 – 3 = 37.
c) 12 : {400 : [500 – (125 + 25 . 7)]}
= 12 : {400 : [500 – (125 + 175)]}
= 12 : [400 : (500 – 300)]
= 12 : (400 : 200)
= 12 : 2
= 6.
d) 168 + {[2 . (24 + 32) – 2560] : 72}
= 168 + {[2 . (16 + 9) – 1] : 49}
= 168 + [(2. 25 – 1) : 49]
= 168 + [(50 – 1) : 49]
= 168 + (49 : 49)
= 168 + 1 = 169.
Lời giải
Ta có: P là tập hợp các số nguyên tố.
a) Vì 2 chỉ có hai ước là 1 và chính nó nên 2 là số nguyên tố hay 2 thuộc P.
Do đó 2
P.
b) Vì 47 chỉ có hai ước là 1 và 47, nên 47 là số nguyên tố hay 47 thuộc P.
Do đó 47
P.
c) Ta có: a = 3 . 5 . 7 . 9 + 20 = 15 . 7 . 9 + 20 = 105 . 9 + 20 = 945 + 20 = 965
Vì 965 : 5 = 193 nên số 965 ngoài có hai ước là 1 và 965, còn có thêm ít nhất một ước nữa là 5 nên 965 hay a là hợp số.
Do đó a không phải là số nguyên tố nên a không thuộc P.
Vậy a
P.
d) Ta có: b = 5 . 7 . 11 + 13 . 17 = 35 . 11 + 221 = 385 + 221 = 606
Vì 606 : 6 = 101 nên số 606 ngoài có hai ước là 1 và 606, còn có thêm ít nhất một ước nữa là 6 nên 606 là hợp số hay b là hợp số.
Do đó b không phải là số nguyên tố nên b không thuộc P.
Vậy b
P.
Lời giải
Ta có thể phân tích một số ra thừa số nguyên tố bằng cách viết "theo cột dọc" hoặc "rẽ nhánh".
a) Ta có:

Vậy 51 = 3 . 17.
b) Ta có:

Vậy 76 = 2 . 2 . 19 = 22 . 19.
c) Ta có:

Vậy 225 = 3 . 3 . 5 . 5 = 32 . 52.
d) Ta có: 1 800 = 10 . 180

Vậy 1 800 = 2 . 5 . 2 . 5 . 2 . 3 . 3 = 23 . 32 . 52.
Lời giải
a) 40 và 60
Ta có:

Do đó: 40 = 2 . 2 . 2 . 5 = 23 . 5
60 = 2 . 2 . 3 . 5 = 22 . 3 . 5
Các thừa số nguyên tố chung của 40 và 60 là 2 và 5
Số 2 có số mũ nhỏ nhất là 2; số 5 có số mũ nhỏ nhất là 1
Vậy ƯCLN(40, 60) = 22 . 51 = 4 . 5 = 20.
b) 16 và 124
Ta có: 16 = 24
Lại có

Do đó: 124 = 2 . 2 . 31 = 22 . 31
Thừa số nguyên tố chung của 16 và 124 là 2, với số mũ nhỏ nhất là 2.
Vậy ƯCLN(16, 124) = 22 = 4.
c) 41 và 47
Ta có: số 41 chỉ có hai ước là 1 và 41 nên 41 là số nguyên tố
Số 47 chỉ có hai ước là 1 và 47 nên 47 cũng là số nguyên tố
Do đó 41 và 47 là hai số nguyên tố cùng nhau.
Vậy ƯCLN(41, 47) = 1.
Lời giải
a) 72 và 540
Ta có:

Do đó: 72 = 2 . 2 . 2 . 3 . 3 = 23 . 32
540 = 2 . 2 . 3 . 3 . 3 . 5 = 22 . 33 . 5
Các thừa số nguyên tố chung và riêng của 72 và 540 là 2, 3, 5
Số hai có số mũ lớn nhất là 3; số 3 có số mũ lớn nhất là 3; số 5 có số mũ lớn nhất là 1.
Vậy BCNN(72, 540) = 23 . 33 . 51 = 8 . 27 . 5 = 1 080.
b) 28, 49, 64
Ta có: 28 = 4 . 7 = 22 . 7
49 = 72; 64 = 26
Các thừa số nguyên tố chung và riêng của 28, 49 và 64 là 2, 7
Số 2 có số mũ lớn nhất là 6, số 7 có số mũ lớn nhất là 2.
Vậy BCNN(28, 49, 64) = 26 . 72 = 64 . 49 = 3 136.
c) 43 và 53
Ta có: 43 chỉ có hai ước là 1 và 43 nên 43 là số nguyên tố
53 chỉ có hai ước là 1 và 53 nên nó cũng là số nguyên tố
Do đó 43 và 53 là hai số nguyên tố cùng nhau.
Vậy BCNN(43, 53) = 43 . 53 = 2 279.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
:
