Quảng cáo
Trả lời:
Hướng dẫn giải:
Đáp án đúng là: B.
Xét hàm số f(x) = 4 – 3x có tập xác định D = ℝ.
Cho x1, x2 tùy ý thuộc D sao cho x1 > x2 ta có: f(x1) – f(x2) = (4 – 3x1) – (4 – 3x2) = 3x2 – 3x1 = 3(x2 – x1)
Ta có: x1 > x2 ⇒ x2 – x1 < 0 ⇒ f(x1) – f(x2) < 0 ⇒ f(x1) < f(x2)
Do đó, khi x1 > x2 thì f(x1) < f(x2).
Vậy hàm số nghịch biến trên ℝ. Do đó, hàm số ngịch biến trên (43; +∞).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải:
Xét hàm số y = x2 trên khoảng (–∞; 0).
Lấy x1, x2 tùy ý sao cho x1 < x2, ta có: f(x1) – f(x2) = x12 – x22 = (x1 – x2)(x1 + x2)
Do x1 < x2 nên x1 – x2 < 0 và do x1, x2 thuộc (–∞; 0) nên x1 + x2 < 0.
Từ đó suy ra: f(x1) – f(x2) > 0 hay f(x1) > f(x2)
Do đó, khi x1 < x2 thì f(x1) > f(x2)
Vậy hàm số nghịch biến (giảm) trên khoảng (–∞; 0).
Lời giải
Hướng dẫn giải:
Đáp án đúng là: C.
Xét khoảng (0; 1) ta thấy đồ thị hàm số có dạng đi xuống từ trái sang phải, do đó, hàm số nghịch biến trên khoảng (0; 1).
Xét khoảng (1; 3), đồ thị hàm số vừa đi lên vừa đi xuống nên ta không xét tính đơn điệu trên khoảng này.
Xét khoảng (3; +∞), đồ thị hàm số đi lên từ trái qua phải nên hàm số đồng biến trên khoảng (3; +∞).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.