Câu hỏi:
13/07/2024 3,866Cho trung tuyến AD, gọi E là trung điểm của AB, N là điểm đối xứng của điểm D qua E.
1. Chứng minh: Tứ giác ANBD là hình bình hành
2. Tìm điều kiện của tam giác ABC để tứ giác ANBD là :
a) Hình chữ nhật
b) Hình thoi
c) Hình vuông
3. Gọi M là giao điểm của NC với AD, chứng minh EM =Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
1)Ta có tứ giác ADBN có 2 đường chéo AB và DN cắt nhau tại trung điểm E mỗi đường
Nên ADBN là hình bình hành
2)
a) ADBN là hình chữ nhật khi . Khi đó có AD vừa là đường cao, vừa là trung tuyến nên cân tại A.
b) ADBN là hình thoi tại E, khi đó mà DE // AC (tính chất đường trung bình) vuông tại A thì ADBN là hình thoi.
c) ANBD là hình vuông <=> ANBD vừa là hình thoi, vừa là hình chữ nhật
khi đó vuông cân tại A
3) Ta có AN = BD = DC nên AN = DC
Và AN // BD ( do ANBD là hình bình hành) mà
Suy ra ANDC là hình bình hành mà là trung điểm AD
có E là trung điểm AB, M là trung điểm AD
=> EM là đường trung bình mà (D là trung điểm BC)
NênCÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Câu 5:
về câu hỏi!