Câu hỏi:
13/07/2024 1,030Tìm góc α ( 0° ≤ α ≤ 180° ) trong mỗi trường hợp sau:
tan α = \[ - \frac{{\sqrt 3 }}{3}\];Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
Dựa vào bảng các giá trị lượng giác đặc biệt, ta có: tan α = \[ - \frac{{\sqrt 3 }}{3}\] ⇒ α = 150°.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho góc x với cosx = \(\frac{{ - 1}}{2}\). Tính giá trị biểu thức
S = 4sin2x + 8tan2x.
Câu 3:
Chứng minh rằng với mọi góc x ( 0° ≤ x ≤ 90°), ta đều có:
tan2x = \(\frac{{{{\sin }^2}{\rm{x}}}}{{{{\cos }^2}{\rm{x}}}}\) ( x ≠ 90°);Câu 4:
Chứng minh rằng với mọi góc x ( 0° ≤ x ≤ 90°), ta đều có:
sinx = \(\sqrt {1 - {{\cos }^2}{\rm{x}}} \);Câu 5:
Tìm góc α ( 0° ≤ α ≤ 180° ) trong mỗi trường hợp sau:
cos α = \[ - \frac{{\sqrt 3 }}{2}\];
về câu hỏi!