Câu hỏi:

13/07/2024 3,190

Quan sát Hình 43, biết  góc MNO = góc AOB = góc BQM = 90 độ, góc ABO = 50. Tìm số đo mỗi góc NMQ, BMQ, MAN. (ảnh 1)

Quan sát Hình 43, biết MNO^=AOB^=BQM^=90°,ABO^=50°. Tìm số đo mỗi góc NMQ, BMQ, MAN.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có ANM^+MNO^=180° (hai góc kề bù)

Suy ra ANM^=180°MNO^=180°90°=90°.

Do đó ANM^=AOB^ (cùng bằng 90°)

ANM^ AOB^ ở vị trí đồng vị nên MN // OB.

Suy ra:

NMO^=BQM^=90° (hai góc so le trong)

AMN^=ABO^=50° (hai góc đồng vị).

Ta có AMN^+NMQ^=AMQ^ (hai góc kề nhau).

AMQ^+BMQ^=180° (hai góc kề bù).

Do đó AMN^+NMQ^+BMQ^=180°

Suy ra 

BMQ^=180°AMN^NMQ^=180°50°90°=40°.

Ta lại có: AOB^=BQM^ (cùng bằng 90°)

AOB^ BQM^ ở vị trí đồng vị nên MQ // AO.

Suy ra MAN^=BMQ^=40° (hai góc đồng vị).

Vậy NMO^=90°,BMQ^=40° và MAN^=40°.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Vì Ox là tia phân giác của góc yOK nên xOy^=xOK^

Do Ox // HK nên ta có:

xOy^=OHK^ (hai góc đồng vị);

xOK^=OKH^ (hai góc so le trong).

Do đó OHK^=OKH^ (cùng bằng xOy^ xOK^).

Vậy OHK^=OKH^.

Lời giải

Vì ME, MF lần lượt là tia phân giác của góc AMB và AMC nên:

AME^=BME^=12AMB^ và AMF^=CMF^=12AMC^

Mặt khác AMB^AMC^ là hai góc kề bù nên ta có:

AMB^+AMC^=180°

Lại có AME^ AMF^ là hai góc kề nhau nên:

AME^+AMF^=EMF^

Do đó \EMF^=AME^+AMF^=12AMB^+12AMC^

Hay EMF^=12(AMB^+AMC^)=12.180°=90°.

Suy ra EMF^=BEM^ (cùng bằng 90°).

EMF^ và BEM^ là hai góc so le trong nên MF // AB.

Vậy MF và AB song song với nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP