Câu hỏi:

13/07/2024 1,215

Tìm số đo góc BCD trong Hình 48, biết AB // DE.
Tìm số đo góc BCD trong Hình 48, biết AB // DE.   (ảnh 1)
 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Tìm số đo góc BCD trong Hình 48, biết AB // DE.   (ảnh 2)

Kẻ Cx // AB (hình vẽ).

Do Cx // AB nên ABC^+BCx^=180° (hai góc trong cùng phía).

Suy ra BCx^=180°ABC^=180°130°=50°.

Do AB // DE nên ABC^+BGE^=180° (hai góc trong cùng phía)

Suy ra BGE^=180°ABC^=180°130°=50°.

Khi đó BCx^=BGE^ (cùng bằng 50°).

Mà hai góc BCx và BGE ở vị trí đồng vị nên Cx // GE.

Suy ra xCD^+CDE^=180° (hai góc trong cùng phía)

Do đó xCD^=180°CDE^=180°150°=30°.

Ta có hai góc BCx và xCD là hai góc kề nhau nên:

BCD^=BCx^+xCD^=50°+30°=80°.

Vậy BCD^=80°.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có ANM^+MNO^=180° (hai góc kề bù)

Suy ra ANM^=180°MNO^=180°90°=90°.

Do đó ANM^=AOB^ (cùng bằng 90°)

ANM^ AOB^ ở vị trí đồng vị nên MN // OB.

Suy ra:

NMO^=BQM^=90° (hai góc so le trong)

AMN^=ABO^=50° (hai góc đồng vị).

Ta có AMN^+NMQ^=AMQ^ (hai góc kề nhau).

AMQ^+BMQ^=180° (hai góc kề bù).

Do đó AMN^+NMQ^+BMQ^=180°

Suy ra 

BMQ^=180°AMN^NMQ^=180°50°90°=40°.

Ta lại có: AOB^=BQM^ (cùng bằng 90°)

AOB^ BQM^ ở vị trí đồng vị nên MQ // AO.

Suy ra MAN^=BMQ^=40° (hai góc đồng vị).

Vậy NMO^=90°,BMQ^=40° và MAN^=40°.

Lời giải

Vì Ox là tia phân giác của góc yOK nên xOy^=xOK^

Do Ox // HK nên ta có:

xOy^=OHK^ (hai góc đồng vị);

xOK^=OKH^ (hai góc so le trong).

Do đó OHK^=OKH^ (cùng bằng xOy^ xOK^).

Vậy OHK^=OKH^.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP