Câu hỏi:

13/07/2024 2,411

Quan sát Hình 51, biết Ox // HK, tia Ox là tia phân giác của góc yOK. Chứng minh hai góc OHK và OKH bằng nhau.

Quan sát Hình 51, biết Ox // HK, tia Ox là tia phân giác của góc yOK. Chứng minh hai góc OHK và OKH bằng nhau. (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Vì Ox là tia phân giác của góc yOK nên xOy^=xOK^

Do Ox // HK nên ta có:

xOy^=OHK^ (hai góc đồng vị);

xOK^=OKH^ (hai góc so le trong).

Do đó OHK^=OKH^ (cùng bằng xOy^ xOK^).

Vậy OHK^=OKH^.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có ANM^+MNO^=180° (hai góc kề bù)

Suy ra ANM^=180°MNO^=180°90°=90°.

Do đó ANM^=AOB^ (cùng bằng 90°)

ANM^ AOB^ ở vị trí đồng vị nên MN // OB.

Suy ra:

NMO^=BQM^=90° (hai góc so le trong)

AMN^=ABO^=50° (hai góc đồng vị).

Ta có AMN^+NMQ^=AMQ^ (hai góc kề nhau).

AMQ^+BMQ^=180° (hai góc kề bù).

Do đó AMN^+NMQ^+BMQ^=180°

Suy ra 

BMQ^=180°AMN^NMQ^=180°50°90°=40°.

Ta lại có: AOB^=BQM^ (cùng bằng 90°)

AOB^ BQM^ ở vị trí đồng vị nên MQ // AO.

Suy ra MAN^=BMQ^=40° (hai góc đồng vị).

Vậy NMO^=90°,BMQ^=40° và MAN^=40°.

Lời giải

Vì ME, MF lần lượt là tia phân giác của góc AMB và AMC nên:

AME^=BME^=12AMB^ và AMF^=CMF^=12AMC^

Mặt khác AMB^AMC^ là hai góc kề bù nên ta có:

AMB^+AMC^=180°

Lại có AME^ AMF^ là hai góc kề nhau nên:

AME^+AMF^=EMF^

Do đó \EMF^=AME^+AMF^=12AMB^+12AMC^

Hay EMF^=12(AMB^+AMC^)=12.180°=90°.

Suy ra EMF^=BEM^ (cùng bằng 90°).

EMF^ và BEM^ là hai góc so le trong nên MF // AB.

Vậy MF và AB song song với nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay