Câu hỏi:

17/08/2022 1,273

Cho ∆ABC (AB < AC), đường cao AH (H ∈ BC). Lấy điểm K bất kì thuộc AH (K ≠ H). Trong các đoạn thẳng AB, AC, AH, BK, CK, KH, đoạn thẳng nào ngắn nhất?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Media VietJack

Ta có đoạn thẳng AH là đường vuông góc kẻ từ điểm A đến đường thẳng BC; các đoạn thẳng AB, AC là các đường xiên kẻ từ điểm A đến đường thẳng BC.

Do đó AH là đoạn thẳng ngắn nhất trong ba đoạn thẳng AB, AC và AH   (1).

Ta có đoạn thẳng KH là đường vuông góc kẻ từ điểm K đến đường thẳng BC; các đoạn thẳng KB, KC là các đường xiên kẻ từ điểm K đến đường thẳng BC.

Do đó KH là đoạn thẳng ngắn nhất trong ba đoạn thẳng KB, KC và KH   (2).

Vì K thuộc AH (giả thiết) nên KH < AH   (3).

Từ (1), (2), (3), ta suy ra KH là đoạn thẳng ngắn nhất trong các đoạn thẳng AB, AC, AH, BK, CK, KH.

Vậy ta chọn đáp án B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

Media VietJack

Ta có NE = MN (giả thiết).

Suy ra ∆MNE cân tại N.

Do đó NME^=NEM^                 (1).

Vì ∆MNP vuông tại A nên NMP^=90°.

Suy ra NME^+EMF^=90°        (2).

Từ (1), (2), ta suy ra NEM^+EMF^=90°  (*).

∆MHE vuông tại H: HME^+NEM^=90°  (**).

Từ (*), (**), ta suy ra EMF^=HME^.

Xét ∆HME và ∆FME, có:

ME là cạnh chung.

EMF^=HME^ (chứng minh trên).

MH = MF (giả thiết).

Do đó ∆HME = ∆FME (c.g.c).

Suy ra MHE^=MFE^ (cặp góc tương ứng).

MHE^=90° (do MH ⊥ HE).

Suy ra MFE^=90°.

Do đó EF ⊥ MF hay EF ⊥ MP.

Khi đó ta có EF là đường vuông góc kẻ từ điểm E đến đường thẳng MP.

Do đó đoạn thẳng EF là khoảng cách từ E đến đường thẳng MP.

Vậy ta chọn đáp án B.

Lời giải

Đáp án đúng là: A

Đoạn thẳng AB là đường vuông góc kẻ từ O đến đường thẳng BC.

Các đoạn thẳng AD, AE, AC là đường xiên kẻ từ A đến đường thẳng BC.

Do đó đoạn AB ngắn nhất.

Vậy ta chọn đáp án A

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP