Cho ∆DEF cân tại D. Lấy điểm K nằm trong ∆DEF sao cho KE = KF. Kẻ KP vuông góc với DE (P ∈ DE), KQ vuông góc DF (Q ∈ DF). Điểm K thuộc đường trung trực của đoạn thẳng:
Cho ∆DEF cân tại D. Lấy điểm K nằm trong ∆DEF sao cho KE = KF. Kẻ KP vuông góc với DE (P ∈ DE), KQ vuông góc DF (Q ∈ DF). Điểm K thuộc đường trung trực của đoạn thẳng:
Quảng cáo
Trả lời:
Đáp án đúng là: A
Xét ∆DEK và ∆DFK, có:
DE = DF (do ∆DEF cân tại D).
KE = KF (giả thiết).
DK là cạnh chung.
Do đó ∆DEK = ∆DFK (c.c.c).
Suy ra (cặp góc tương ứng).
Xét ∆DPK và ∆DQK, có:
DK là cạnh chung.
(chứng minh trên).
.
Do đó ∆DPK = ∆DQK (cạnh huyền – góc nhọn).
Suy ra KP = KQ (cặp cạnh tương ứng).
Khi đó K thuộc đường trung trực của đoạn thẳng PQ.
Vậy ta chọn đáp án A.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: C
Đường trung trực của một đoạn thẳng là đường thẳng vuông góc với đoạn thẳng tại trung điểm của đoạn thẳng ấy.
Do đó xy là đường trung trực của đoạn thẳng AB nếu xy vuông góc với AB tại trung điểm của AB.
Vậy ta chọn đáp án C.
Lời giải
Đáp án đúng là: C
Ta có OB là đường trung trực của đoạn thẳng AC (giả thiết).
Suy ra OA = OC và BA = BC.
Khi đó ∆OAC cân tại O.
Do đó đáp án D đúng.
Xét ∆OAB và ∆OCB, có:
OA = OC (chứng minh trên).
BA = BC (chứng minh trên).
OB là cạnh chung.
Suy ra ∆OAB = ∆OCB (c.c.c)
Do đó đáp án A đúng.
Ta có ∆OAB = ∆OCB (chứng minh trên).
Suy ra .
Khi đó .
Do đó đáp án B đúng.
Đến đây ta có thể chọn đáp án C.
Xét đáp án C:
Ta có ∆OAC cân tại O.
Suy ra (tính chất tam giác cân).
∆OAC có: (định lí tổng ba góc của tam giác)
Suy ra .
Khi đó .
Do đó đáp án C sai.
Vậy ta chọn đáp án C.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.