Câu hỏi:
17/08/2022 3,191Trong không gian Oxyz, cho mặt cầu (S): x2 + y2 + z2 + 2x - 4y + 2z - 3 = 0. Viết phương trình mặt phẳng (a) chứa trục Oz cắt mặt cầu (S) theo thiết diện là đường tròn có chu vi bằng 6p.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: B
(S): x2 + y2 + z2 + 2x - 4y + 2z - 3 = 0
Û (x2 + 2x + 1) + (y2 - 4y + 4) + (z2 + 2z +1) = 9
Û (x + 1)2 + (y - 2)2 + (z + 1)2 = 9
Vậy mặt cầu (S) có tâm là điểm I(-1; 2; -1) và R = 3
Phương trình mặt phẳng (a) chứa trục Oz cắt mặt cầu (S) theo thiết diện là đường tròn có bán kính là HM
Nên suy ra C = 2p.HM = 6p Þ HM = 3 = R
Vậy mặt phẳng đã cho đi qua tâm I của mặt cầu
Phương trình mặt phẳng (a) chứa trục Oz nên véc-tơ pháp tuyến của (a) là vuông góc với véc-tơ chỉ phương của Oz là (0; 0; 1)
Þ a.0 + b.0 + c.1 = 0
Þ c = 0
Vậy phương trình mặt phẳng (a) đi qua I và có véc-tơ pháp tuyến là
a.(x + 1) + b.(y -2) = 0
Û ax + by + (a - 2b) = 0 (1)
Do phương trình mặt phẳng (a) đi qua Oz nên đi qua điểm O
Vậy từ (1) ta có a - 2b = 0 Û a = 2b
Thay a = 2b vào (1) nên suy ra (1) trở thành
2bx + by = 0
Û 2x + y = 0.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Trong không gian Oxyz, đường thẳng d đi qua điểm A(1; −2; 1) và vuông góc với mặt phẳng (P): x - 2y + 3z - 1 = 0 có phương trình là
Câu 4:
Cho là một nguyên hàm của hàm số . Tìm họ nguyên hàm của hàm số
Câu 5:
Câu 6:
Trong không gian Oxyz , khoảng cách giữa hai mặt phẳng (a): 2x - 2y + z - 4 = 0 và (β): 4x - 4y + 2z - 3 = 0 bằng
về câu hỏi!