Câu hỏi:
18/08/2022 510Cho số phức z thõa mãn |z - 1 + i| = 2. Tìm giá trị lớn nhất của biểu thức P = |z + 2 - i|2 + |z - 2 - 3i|2.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: A
Đặt z = a + bi với M(a; b) là điểm biểu diễn của z
+) |z - 1 + i| = 2
Þ MI = 2 với I(1; -1)
Tương tự ta xét P = |z + 2 - i|2 + |z - 2 - 3i|2
= MA2 + MB2 với A(-2; 1) và B(2; 3)
Yêu cầu bài toán trở thành tìm giá trị lớn nhất của P với M là điểm thỏa mãn MI = 2
Nên suy ra M thuộc đường tròn tâm I bán kính R = 2
Û (a - 1)2 + (b + 1)2 = 4
Û a2 - 2a + b2 + 2b - 2 = 0
Vậy
= (a + 2)2 + (b - 1)2 + (a - 2)2 + (b - 3)2
= 2a2 + 2b2 - 8b + 18
= 2a2 + (2b2 - 8b + 8) + 10
= 2a2 + 2(b - 2)2 + 10
= 2MH2 + 10
Vậy M là điểm thuộc đường tròn tâm I bán kính bằng 2 sao cho 2MH2 + 10 đạt GTLN hay MH lớn nhất với H(0; 2)
Từ đó M là giao của đường tròn và đường thẳng HI và M xa AB nhất
Vậy suy ra
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Trong không gian Oxyz, đường thẳng d đi qua điểm A(1; −2; 1) và vuông góc với mặt phẳng (P): x - 2y + 3z - 1 = 0 có phương trình là
Câu 4:
Cho là một nguyên hàm của hàm số . Tìm họ nguyên hàm của hàm số
Câu 5:
Câu 6:
Trong không gian Oxyz, cho mặt cầu (S): x2 + y2 + z2 + 2x - 4y + 2z - 3 = 0. Viết phương trình mặt phẳng (a) chứa trục Oz cắt mặt cầu (S) theo thiết diện là đường tròn có chu vi bằng 6p.
Câu 7:
Trong không gian Oxyz , khoảng cách giữa hai mặt phẳng (a): 2x - 2y + z - 4 = 0 và (β): 4x - 4y + 2z - 3 = 0 bằng
về câu hỏi!