Câu hỏi:

18/08/2022 2,375

Có bao nhiêu giá trị nguyên của m để bất phương trình x2 + 3mx2 + 4mx + 4 ≥ 0 với mọi x \( \in \) ℝ.

Đáp án chính xác

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Ta có x2 + 3mx2 + 4mx + 4 ≥ 0

\( \Leftrightarrow \) (1 + 3m)x2 + 4mx + 4 ≥ 0

Với 1 + 3m = 0 thì m = \( - \frac{1}{3}\) thì bất phương trình trở thành \( - \frac{4}{3}\)x + 4 ≥ 0 x 3. Vậy m = \( - \frac{1}{3}\) không thỏa mãn.

Với 1 + 3m 0 thì m \( - \frac{1}{3}\)

Để bất phương trình (1 + 3m)x2 + 4mx + 4 ≥ 0 với mọi x \( \in \) ℝ thì

\( \Leftrightarrow \left\{ \begin{array}{l}1 + 3m > 0\\\Delta ' = 4{m^2} - 12m - 4 \le 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}m > - \frac{1}{3}\\4{m^2} - 12m - 4 \le 0\end{array} \right.\)

Xét f(m) = 4m2 – 12m – 4 có ∆ = 208 > 0, hai nghiệm phân biệt là x = \(\frac{{3 - \sqrt {13} }}{2}\) ; x = \(\frac{{3 + \sqrt {13} }}{2}\) và a = 4 > 0

Ta có bảng xét dấu

Có bao nhiêu giá trị nguyên của m để bất phương trình x^2 + 3mx^2 + 4mx + 4 > = 0 (ảnh 1)

Từ bảng xét dấu ta có để f(m) ≤ 0 thì \(\frac{{3 - \sqrt {13} }}{2}\)≤ m ≤ \(\frac{{3 + \sqrt {13} }}{2}\)

Kết hợp với điều kiện của m để (1 + 3m)x2 + 4mx + 4 ≥ 0 với mọi x \( \in \) ℝ thì \(\frac{{3 - \sqrt {13} }}{2}\)≤ m ≤ \(\frac{{3 + \sqrt {13} }}{2}\)

Vậy có 4 giá trị nguyên của m để bất phương trình (1 + 3m)x2 + 4mx + 4 ≥ 0 với mọi x \( \in \) ℝ.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Xác định m để bất phương trình x2 + 2(m – 2)x + 2m – 1 > 0 có nghiệm với mọi x \( \in \).

Xem đáp án » 18/08/2022 6,782

Câu 2:

Tích các nghiệm của phương trình \[{x^2} - 2x + 3\sqrt {{x^2} - 2x - 3} = 7\] là:

Xem đáp án » 18/08/2022 4,379

Câu 3:

Tam thức f(x) = x2 + 2x – 3 nhận giá trị dương khi và chỉ khi

Xem đáp án » 18/08/2022 2,219

Câu 4:

Cho f(x) = mx2 – 2x – 1. Xác định m để f(x) ≤ 0 với \[\forall x \in \mathbb{R}\].

Xem đáp án » 18/08/2022 1,515

Câu 5:

Gọi x là nghiệm của phương trình

\(\sqrt {3x - 2} + \sqrt {x - 1} = 4x - 9 + 2\sqrt {3{x^2} - 5x + 2} \)

Tính giá trị của biểu thức A = x2 – 3x + 15

Xem đáp án » 18/08/2022 1,153

Câu 6:

Tích các nghiệm của phương trình x2 + 2\(\sqrt {{x^2} - 3x + 11} \) = 3x + 4 là

Xem đáp án » 18/08/2022 1,013

Bình luận


Bình luận