Câu hỏi:
18/08/2022 1,929Tìm số hạng chứa x4 trong khai triển \({\left( {{x^2} - \frac{1}{x}} \right)^n}\) biết \(A_n^2 - C_n^2 = 10\)
Quảng cáo
Trả lời:
Đáp án đúng là: B
Ta có: \(A_n^2 - C_n^2 = 10\)\( \Leftrightarrow \frac{{n!}}{{\left( {n - 2} \right)!}} - \frac{{n!}}{{2!\left( {n - 2} \right)!}} = 10\)
\( \Leftrightarrow \frac{{n(n - 1)(n - 2)...1}}{{(n - 2)...1}} - \frac{{n(n - 1)(n - 2)...1}}{{2.(n - 2)...1}} = 10\)
\( \Leftrightarrow \) n(n – 1) – \(\frac{1}{2}\) n(n – 1) = 10
\( \Leftrightarrow \) \(\frac{1}{2}\)n(n – 1) = 10 \( \Leftrightarrow \) n2 – n – 20 = 0\( \Leftrightarrow \left[ \begin{array}{l}n = 5\\n = - 4\,\end{array} \right.\).
Kết hợp với điều kiện n = 5 thoả mãn
Nhị thức \({\left( {{x^2} - \frac{1}{x}} \right)^n}\)
Ta có công thức số hạng tổng quát trong khai triển (a + b)n là \(C_n^k\)an – k .bk (k ≤ n)
Thay a = x2, b = \( - \frac{1}{x}\) vào trong công thức ta có
\(C_5^k\)(x2)5 – k .\({\left( { - \frac{1}{x}} \right)^k}\) = ( –1)k\(C_5^k\)(x)10 – 3k
Số hạng cần tìm chứa x4 nên ta có 10 – 3k = 4
Vậy k = 2 thoả mãn bài toán
Vậy hệ số của số hạng không chứa x trong khai triển là: ( –1)2\[C_5^2\] = 10
Hot: Đề thi cuối kì 2 Toán, Văn, Anh.... file word có đáp án chi tiết lớp 1-12 form 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 6:
Biết hệ số của x3 trong khai triển của (1 – 3x)n là – 270. Giá trị của n là
Câu 7:
Trong khai triển nhị thức (a + 2)2n + 1 (n \( \in \) ℕ). Có tất cả 6 số hạng. Vậy n bằng
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
185 câu Trắc nghiệm Toán 10 Bài 1:Phương trình đường thẳng trong mặt phẳng oxy có đáp án (Mới nhất)
10 Bài tập Tính số trung bình, trung vị, tứ phân vị và mốt của mẫu số liệu cho trước (có lời giải)
15 câu Trắc nghiệm Toán 10 Kết nối tri thức Quy tắc đếm có đáp án
10 Bài tập Các bài toán thực tế ứng dụng nhị thức Newton (có lời giải)
10 Bài tập Viết phương trình cạnh, đường cao, trung tuyến, phân giác của tam giác (có lời giải)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận