Câu hỏi:
18/08/2022 545
Cho số phức z thỏa mãn điều kiện (3 + 2i)z + (2 - i)2 = 20 + 3i. Hiệu phần thực và phần ảo của số phức z là:
Cho số phức z thỏa mãn điều kiện (3 + 2i)z + (2 - i)2 = 20 + 3i. Hiệu phần thực và phần ảo của số phức z là:
Câu hỏi trong đề: Đề kiểm tra Học kì 2 Toán 12 có đáp án (Mới nhất) !!
Quảng cáo
Trả lời:
Đáp án đúng là: C
Đặt: z = a + bi
(3 + 2i)z + (2 - i)2 = 20 + 3i
Þ (3 + 2i).(a + bi) + (2 - i)2 = 20 + 3i
Û 3a + 3bi + 2ai + 2bi2 + 4 - 4i + i2 = 20 + 3i
Û 3a + 3bi + 2ai - 2b + 4 - 4i - 1 = 20 + 3i
Û (3a - 2b - 17) + (3b + 2a - 7).i = 0
Vậy hiệu phần thực và phần ảo của số phức z là: a - b = 5 - (-1) = 6.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: C
Ta có:
Mặt phẳng vuông góc với BC nên BC là véc-tơ pháp tuyến của mặt phẳng
Mặt phẳng đi qua điểm A(-1; 1; 1) có véc-tơ pháp tuyến là
-1.(x + 1) - 2.(y - 1) + 2.(z - 1) = 0
Û - x - 2y + 2z - 1 = 0
Û x + 2y - 2z + 1 = 0.
Lời giải
Đáp án đúng là: A
M là một điểm nằm trên mặt phẳng Oxy Þ M(x; y; 0)
Vậy Pmin khi (x - 1)2 + (y - 2)2 + 4 đạt GTNN
Þ x = 1, y = 2
Vậy M(1; 2; 0).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.