Câu hỏi:

24/08/2022 377 Lưu

∆ABC đều cạnh a nội tiếp trong đường tròn bán kính R. Khi đó bán kính R bằng:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: C

Ta có ∆ABC đều cạnh a.

Suy ra AB = AC = BC = a.

Nửa chu vi ∆ABC là: \(p = \frac{{a + a + a}}{2} = \frac{{3a}}{2}\).

Diện tích ∆ABC là:

\(S = \sqrt {p\left( {p - AB} \right)\left( {p - AC} \right)\left( {p - BC} \right)} \)

\( = \sqrt {\frac{{3a}}{2}\left( {\frac{{3a}}{2} - a} \right)\left( {\frac{{3a}}{2} - a} \right)\left( {\frac{{3a}}{2} - a} \right)} \)

\( = \sqrt {\frac{{3a}}{2}.\frac{a}{2}.\frac{a}{2}.\frac{a}{2}} = \frac{{{a^2}.\sqrt 3 }}{4}\) (đơn vị diện tích)

Ta có \(S = \frac{{AB.AC.BC}}{{4R}}\).

Suy ra \(R = \frac{{AB.AC.BC}}{{4S}} = \frac{{a.a.a}}{{4.\frac{{{a^2}.\sqrt 3 }}{4}}} = \frac{{a\sqrt 3 }}{3}\).

Vậy ta chọn phương án C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Nửa chu vi của ∆ABC là: \(p = \frac{{a + b + c}}{2} = \frac{{5 + 6 + 7}}{2} = 9\).

Diện tích của ∆ABC là:

\(S = \sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)} \)

\( = \sqrt {9\left( {9 - 5} \right)\left( {9 - 6} \right)\left( {9 - 7} \right)} = 6\sqrt 6 \) (đơn vị diện tích)

Ta có S = p.r

\( \Leftrightarrow r = \frac{S}{p} = \frac{{6\sqrt 6 }}{9} = \frac{{2\sqrt 6 }}{3}\).

Vậy ta chọn phương án C.

Câu 2

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Do ∆ABC đều nên \(\widehat {BAC} = 60^\circ \).

Áp dụng định lí sin cho ∆ABC, ta có \(\frac{{BC}}{{\sin \widehat {BAC}}} = 2R\)

BC = 2R.sinA = 2.4.sin60° = \(4\sqrt 3 \).

Vì ∆ABC đều nên ta có AB = AC = BC = \(4\sqrt 3 \).

Diện tích ∆ABC là:

\(S = \frac{{AB.AC.BC}}{{4R}} = \frac{{4\sqrt 3 .4\sqrt 3 .4\sqrt 3 }}{{4.4}} = 12\sqrt 3 \) (cm2)

Do đó ta chọn phương án C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP