Câu hỏi:

24/08/2022 280

Cho hình thoi ABCD có cạnh bằng 1 cm và có đường chéo AC = \(\sqrt 3 \) cm. Số đo \(\widehat {BAD}\) bằng:

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: C

Media VietJack

Vì ABCD là hình thoi có cạnh bằng 1 cm nên ta có AB = BC = 1 cm và AC = \(\sqrt 3 \) cm.

Áp dụng hệ quả của định lí côsin cho DABC, ta có:

\(\cos \widehat {BAC} = \frac{{A{B^2} + A{C^2} - B{C^2}}}{{2.AB.AC}} = \frac{{{1^2} + {{\left( {\sqrt 3 } \right)}^2} - {1^2}}}{{2.1.\sqrt 3 }} = \frac{{\sqrt 3 }}{2}\).

Suy ra \(\widehat {BAC} = 30^\circ \).

Vì ABCD là hình thoi nên đường chéo AC là tia phân giác của \(\widehat {BAD}\).

Suy ra \(\widehat {BAD} = 2\widehat {BAC} = 2.30^\circ = 60^\circ \).

Vậy ta chọn phương án C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

∆ABC có a = 5, b = 6, c = 7. Bán kính r của đường tròn nội tiếp ∆ABC bằng:

Xem đáp án » 24/08/2022 2,140

Câu 2:

Tam giác đều nội tiếp đường tròn bán kính R = 4 cm có diện tích bằng:

Xem đáp án » 24/08/2022 787

Câu 3:

∆ABC có AB = 3, AC = 6 và \(\widehat A = 60^\circ \). Độ dài bán kính R của đường tròn ngoại tiếp ∆ABC bằng:

Xem đáp án » 24/08/2022 527

Câu 4:

∆ABC có a = 21, b = 17, c = 10. Diện tích của tam giác ABC bằng:

Xem đáp án » 24/08/2022 491

Câu 5:

∆ABC có AB = 5, AC = 10, \(\widehat A = 60^\circ \). Độ dài đường cao ha của ∆ABC bằng:

Xem đáp án » 24/08/2022 301

Câu 6:

∆ABC đều cạnh a nội tiếp trong đường tròn bán kính R. Khi đó bán kính R bằng:

Xem đáp án » 24/08/2022 291

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store