Câu hỏi:
24/08/2022 264Cho ∆ABC. Nếu tăng cạnh AB lên 4 lần và tăng cạnh AC lên 5 lần và giữ nguyên độ lớn của \(\widehat A\) thì khi đó diện tích của tam giác mới S’ được tạo nên bằng:
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: D
Diện tích ∆ABC ban đầu là: \(S = \frac{1}{2}.AB.AC.\sin A\).
Khi tăng cạnh AB lên 4 lần và tăng cạnh AC lên 5 lần và giữ nguyên độ lớn của \(\widehat A\) thì diện tích ∆ABC lúc này là:
\(S' = \frac{1}{2}.\left( {4AB} \right).\left( {5AC} \right).\sin A = 4.5.\frac{1}{2}AB.AC.\sin A = 20S\).
Vậy ta chọn phương án D.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án đúng là: D
⦁ Ta xét khẳng định (I):
Áp dụng định lí côsin cho ∆ABC ta có:
b2 – c2 = c2 + a2 – 2ca.cosB – (a2 + b2 – 2ab.cosC)
= c2 + a2 – 2ca.cosB – a2 – b2 + 2ab.cosC
= c2 – b2 + 2a(b.cosC – c.cosB)
Þ b2 – c2 = c2 – b2 + 2a(b.cosC – c.cosB)
Þ 2(b2 – c2) = 2a(b.cosC – c.cosB)
Þ b2 – c2 = a(b.cosC – c.cosB).
Do đó khẳng định (I) đúng.
⦁ Ta xét khẳng định (II):
Áp dụng hệ quả định lí sin cho ∆ABC ta có:
(b + c)sinA = \[\left( {2R.\sin B + 2R.\sin C} \right).\frac{a}{{2R}}\]
\[ = \left( {\sin B + \sin C} \right).\frac{{2R.a}}{{2R}}\]
= a(sinB + sinC).
Vì vậy khẳng định (II) đúng.
⦁ Ta xét khẳng định (III):
Áp dụng hệ quả định lí sin cho ∆ABC ta có:
2R.sinB.sinC = \(2R.\frac{b}{{2R}}.\frac{c}{{2R}}\)
\( = \frac{{bc}}{{2R}} = \frac{{abc}}{{4R}}.\frac{2}{a}\)
\( = \frac{{2S}}{a} = {h_a}\).
Vì vậy khẳng định (III) đúng.
⦁ Ta xét khẳng định (IV):
Áp dụng hệ quả định lí sin cho ∆ABC ta có:
R.r.(sinA + sinB + sin C) = \(R.r.\left( {\frac{a}{{2R}} + \frac{b}{{2R}} + \frac{c}{{2R}}} \right)\)
\[ = R.r.\frac{1}{R}\left( {\frac{a}{2} + \frac{b}{2} + \frac{c}{2}} \right)\]
\[ = r.\frac{{a + b + c}}{2} = r.p = S\].
Vì vậy khẳng định (IV) đúng.
Vậy có 4 khẳng định đúng, ta chọn phương án D.
Lời giải
Hướng dẫn giải
Đáp án đúng là: B

Giả sử sau hai giờ, tàu 1 đến vị trí điểm B, tàu 2 đến vị trí điểm C.
Sau hai giờ, tàu 1 đi được 2.30 = 60 (hải lí).
Suy ra AB = 60.
Sau hai giờ, tàu hai đi được 2.25 = 50 (hải lí).
Suy ra AC = 50.
Ta có BC2 = AB2 + AC2 – 2.AB.AC.cosA
= 602 + 502 – 2.60.50.cos120°
= 9100
Suy ra BC = \(\sqrt {9100} = 10\sqrt {91} \approx 95,4\).
Vì vậy sau hai giờ, hai tàu cách nhau khoảng 95,4 hải lí.
Vậy ta chọn phương án B.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.