Câu hỏi:
24/08/2022 2,303Cho ∆ABC và các khẳng định sau:
(I) b2 – c2 = a(b.cosC – c.cosB);
(II) (b + c)sinA = a(sinB + sinC);
(III) ha = 2R.sinB.sinC;
(IV) S = R.r.(sinA + sinB + sin C);
Số khẳng định đúng là:
Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: D
⦁ Ta xét khẳng định (I):
Áp dụng định lí côsin cho ∆ABC ta có:
b2 – c2 = c2 + a2 – 2ca.cosB – (a2 + b2 – 2ab.cosC)
= c2 + a2 – 2ca.cosB – a2 – b2 + 2ab.cosC
= c2 – b2 + 2a(b.cosC – c.cosB)
Þ b2 – c2 = c2 – b2 + 2a(b.cosC – c.cosB)
Þ 2(b2 – c2) = 2a(b.cosC – c.cosB)
Þ b2 – c2 = a(b.cosC – c.cosB).
Do đó khẳng định (I) đúng.
⦁ Ta xét khẳng định (II):
Áp dụng hệ quả định lí sin cho ∆ABC ta có:
(b + c)sinA = \[\left( {2R.\sin B + 2R.\sin C} \right).\frac{a}{{2R}}\]
\[ = \left( {\sin B + \sin C} \right).\frac{{2R.a}}{{2R}}\]
= a(sinB + sinC).
Vì vậy khẳng định (II) đúng.
⦁ Ta xét khẳng định (III):
Áp dụng hệ quả định lí sin cho ∆ABC ta có:
2R.sinB.sinC = \(2R.\frac{b}{{2R}}.\frac{c}{{2R}}\)
\( = \frac{{bc}}{{2R}} = \frac{{abc}}{{4R}}.\frac{2}{a}\)
\( = \frac{{2S}}{a} = {h_a}\).
Vì vậy khẳng định (III) đúng.
⦁ Ta xét khẳng định (IV):
Áp dụng hệ quả định lí sin cho ∆ABC ta có:
R.r.(sinA + sinB + sin C) = \(R.r.\left( {\frac{a}{{2R}} + \frac{b}{{2R}} + \frac{c}{{2R}}} \right)\)
\[ = R.r.\frac{1}{R}\left( {\frac{a}{2} + \frac{b}{2} + \frac{c}{2}} \right)\]
\[ = r.\frac{{a + b + c}}{2} = r.p = S\].
Vì vậy khẳng định (IV) đúng.
Vậy có 4 khẳng định đúng, ta chọn phương án D.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Hai tàu thủy cùng xuất phát từ một vị trí A, đi thẳng theo hai hướng tạo với nhau một góc 120°. Tàu 1 chạy với vận tốc 30 hải lí/giờ. Tàu 2 chạy với vận tốc 25 hải lí/giờ. Sau hai giờ, hai tàu cách nhau khoảng:
Câu 2:
∆ABC vuông cân tại A và nội tiếp đường tròn tâm O, bán kính R. Gọi r là bán kính đường tròn nội tiếp ∆ABC. Khi đó tỉ số \(\frac{R}{r}\) bằng:
Câu 3:
Cho ∆ABC. Nếu tăng cạnh AB lên 4 lần và tăng cạnh AC lên 5 lần và giữ nguyên độ lớn của \(\widehat A\) thì khi đó diện tích của tam giác mới S’ được tạo nên bằng:
Câu 4:
∆ABC có \(AB = \frac{{\sqrt 6 - \sqrt 2 }}{2}\), \(BC = \sqrt 3 \), \(CA = \sqrt 2 \). Gọi D là chân đường phân giác trong của \(\widehat A\). Khi đó số đo của \(\widehat {ADB}\) bằng:
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
75 câu trắc nghiệm Vectơ nâng cao (P1)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
10 Bài tập Tính số trung bình, trung vị, tứ phân vị và mốt của mẫu số liệu cho trước (có lời giải)
185 câu Trắc nghiệm Toán 10 Bài 1:Phương trình đường thẳng trong mặt phẳng oxy có đáp án (Mới nhất)
15 câu Trắc nghiệm Toán 10 Kết nối tri thức Số gần đúng và sai số có đáp án
15 câu Trắc nghiệm Toán 10 chân trời sáng tạo Mệnh đề có đáp án
về câu hỏi!