Câu hỏi:

25/08/2022 1,736 Lưu

Cho ∆ABC có a.sinA + b.sinB + c.sinC = ha + hb + hc. Khi đó ∆ABC là:

A. Tam giác cân;
B. Tam giác đều;
C. Tam giác thường;
D. Tam giác vuông.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: B

Diện tích ∆ABC là: \(S = \frac{1}{2}a.{h_a} = \frac{1}{2}b.{h_b} = \frac{1}{2}c.{h_c}\).

Suy ra \({h_a} = \frac{{2S}}{a};\,\,{h_b} = \frac{{2S}}{b};\,\,{h_c} = \frac{{2S}}{c}\).

Diện tích ∆ABC là:

\(S = \frac{1}{2}bc.\sin A = \frac{1}{2}ac.\sin B = \frac{1}{2}ab.\sin C\).

Suy ra \(\sin A = \frac{{2S}}{{bc}};\,\,\sin B = \frac{{2S}}{{ac}};\,\,\sin C = \frac{{2S}}{{ab}}\).

Ta có a.sinA + b.sinB + c.sinC = ha + hb + hc

\( \Leftrightarrow a.\frac{{2S}}{{bc}} + b.\frac{{2S}}{{ac}} + c.\frac{{2S}}{{ab}} = \frac{{2S}}{a} + \frac{{2S}}{b} + \frac{{2S}}{c}\)

\( \Leftrightarrow 2S.\left( {\frac{a}{{bc}} + \frac{b}{{ac}} + \frac{c}{{ab}}} \right) = 2S.\left( {\frac{1}{a} + \frac{1}{b} + \frac{1}{c}} \right)\)

\( \Leftrightarrow \frac{a}{{bc}} + \frac{b}{{ac}} + \frac{c}{{ab}} = \frac{1}{a} + \frac{1}{b} + \frac{1}{c}\)

\( \Leftrightarrow \frac{{{a^2} + {b^2} + {c^2}}}{{abc}} = \frac{{bc + ac + ab}}{{abc}}\)

a2 + b2 + c2 = bc + ac + ab

2a2 + 2b2 + 2c2 = 2bc + 2ac + 2ab

(a2 – 2ab + b2) + (a2 – 2ac + c2) + (b2 – 2bc + c2) = 0

(a – b)2 + (a – c)2 + (b – c)2 = 0

\( \Leftrightarrow \left\{ \begin{array}{l}a - b = 0\\a - c = 0\\b - c = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = b\\a = c\\b = c\end{array} \right.\)

a = b = c.

Vậy ∆ABC là tam giác đều.

Do đó ta chọn phương án B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Ta có \(\widehat {BAC} + \widehat {CAH} = \widehat {BAH} = 90^\circ \).

\[ \Rightarrow \widehat {BAC} = 90^\circ - 30^\circ = 60^\circ \].

Ta có \(\widehat {ABC} = \widehat {ABD} + \widehat {DBC} = 90^\circ + 15^\circ 30' = 105^\circ 30'\).

∆ABC có \(\widehat {BAC} + \widehat {ABC} + \widehat {ACB} = 180^\circ \) (định lí tổng ba góc trong một tam giác)

Suy ra \(\widehat {ACB} = 180^\circ - \left( {\widehat {BAC} + \widehat {ABC}} \right) = 180^\circ - \left( {60^\circ + 105^\circ 30'} \right) = 14^\circ 30'\).

Áp dụng định lí sin cho ∆ABC, ta được \(\frac{{AC}}{{\sin \widehat {ABC}}} = \frac{{AB}}{{\sin \widehat {ACB}}}\)

Suy ra \(AC = \frac{{AB.\sin \widehat {ABC}}}{{\sin \widehat {ACB}}} = \frac{{70.\sin 105^\circ 30'}}{{\sin 14^\circ 30'}} \approx 269,4\) (m)

∆ACH vuông tại H: \(\sin \widehat {CAH} = \frac{{CH}}{{AC}}\)

Suy ra \(CH = AC.\sin \widehat {CAH} \approx 269,4.\sin 30^\circ = 134,7\) (m)

Vậy ngọn núi cao khoảng 134,7 m.

Giá trị này gần với 135 m nhất.

Do đó ta chọn phương án A.

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Bài toán trở thành tìm bán kính đường tròn ngoại tiếp R của ∆ABC.

Nửa chu vi của ∆ABC là:

\[p = \frac{{AB + BC + AC}}{2} = \frac{{2,56 + 4,18 + 6,17}}{2} = 6,455\] (cm)

Diện tích của ∆ABC là:

\(S = \sqrt {p\left( {p - AB} \right)\left( {p - BC} \right)\left( {p - AC} \right)} \)

\( = \sqrt {6,455\left( {6,455 - 2,56} \right)\left( {6,455 - 4,18} \right)\left( {6,455 - 6,17} \right)} \)

≈ 4,0375 (cm2).

Ta có \(S = \frac{{AB.BC.AC}}{{4R}}\)

Suy ra \(R = \frac{{AB.BC.AC}}{{4S}} = \frac{{2,56.4,18.6,17}}{{4.4,0375}} \approx 4,088\) (cm).

Vậy bán kính của chiếc đĩa bằng khoảng 4,088 cm.

Do đó ta chọn phương án C.

Câu 3

A. Tam giác vuông;
B. Tam giác cân;
C. Tam giác tù;
D. Tam giác đều.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. a2 = bc;
B. \[\cos A \ge \frac{1}{2}\];
C. Cả A và B đều đúng;
D. Cả A và B đều sai.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP