Câu hỏi:

25/08/2022 9,907

Trong không gian vi h tọa độ Oxyz, gọi (P) mặt phẳng chứa đường thẳng (d): x21  = y12  = z1  và cắt các trục Ox, Oy lần lượt tại A và B sao cho đường thẳng AB vuông góc với (d). Phương trình của mặt phẳng (P) là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là B

Vì A thuộc trục Ox nên A (a; 0; 0) với a ℝ; B thuộc Oy nên B (0; b; 0) với b ℝ.

AB = (a; b; 0)

Ta lại có đường thẳng AB vuông góc với đường thẳng (d) nên: AB.ud=0a.1+b.2+1.0=0

a = 2b

Do đó AB  = (2b; b; 0) = b (2; 1; 0)

Vì mặt phẳng (P) chứa đường thẳng d và cắt hai trục tọa độ Ox, Oy tại A và B nên ta có vectơ pháp tuyến của mặt phẳng (P) là: n(P)=AB;ud  = (1; 2; 5) hay n(P)=1;2;5 .

Lấy M (2; 1; 0) thuộc đường thẳng d nên cũng thuộc mặt phẳng (P).

Phương trình mặt phẳng (P) đi qua điểm M (2; 1; 0) và nhận n(P)=1;2;5  làm VTPT là: 1(x – 2) + 2(y – 1) + 5(z – 0) = 0

x + 2y + 5z – 4 = 0.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là B

Trong không gian Oxyz, một đường thẳng được xác định khi biết một điểm nó đi qua và một vectơ chỉ phương (VTCP). Giả sử đường thẳng d đi qua điểmM(x0; y0; z0)và có vectơ chỉ phương là u = (a; b; c) thì d sẽ có phương trình chính tắc là

xx0a = yy0b = zz0c

Vậy nên vectơ chỉ phương của đường thẳng d là: u = (1; 3; 2).


Lời giải

Đáp án đúng là B

Ta có: Hoành độ giao điểm của đồ thị hàm số y = x2 x và trc hoành là

x2 x = 0   

x. (x 1) = 0

 x=0x1=0

 x=0x=1

Diện tích hình phng gii hạn bởi đồ th hàm s y = x2 x và trc hoành là

S 01x2xdx

Với x [0; 1] thì x2 x < 0 nên | x2 x| = x2 + x

Do đó: S =01x2xdx 01x2+xdx

x33+x2201

= -133+122

16

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP