Câu hỏi:

13/07/2024 6,663

Xét tính liên tục của hàm số \(f(x) = \left\{ {\begin{array}{*{20}{c}}{\frac{{2{x^2} - x - 6}}{{x - 2}}\,\,khi\,x \ne 2}\\{5x - 3\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,x = 2}\end{array}} \right.\) tại x0 = 2.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Tại x0 = 2, ta có: f(2) = 5.2 – 3 = 7.

\(\mathop {\lim }\limits_{x \to 2} f(x) = \mathop {\lim }\limits_{x \to 2} \frac{{2{x^2} - x - 6}}{{x - 2}}\)

\( = \mathop {\lim }\limits_{x \to 2} \frac{{2(x - 2)\left( {x + \frac{3}{2}} \right)}}{{x - 2}}\)

\( = \mathop {\lim }\limits_{x \to 2} (2x + 3) = 7\)

Vì f(2) = \(\mathop {\lim }\limits_{x \to 2} f(x)\)= 7 nên hàm số đã cho liên tục tại x0 = 2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Ta có AC là hình chiếu vuông góc của SC trên mặt phẳng (ABCD) Þ \(\widehat {SCA}\) là góc giữa SC và mặt phẳng (ABCD)

Ta có AC = 2a (đường chéo hình vuông ABCD)

Tan \(\widehat {SCA}\)= \(\frac{{SA}}{{AC}} = \frac{{3a}}{{2a}} = \frac{3}{2}\) Þ \(\widehat {SCA}\)= 56°18’

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Media VietJack

Ta có SA ^ (ABC) Þ AC là hình chiếu của SC lên (ABC)

Þ [SC,(ABC)] = \(\widehat {SCA}.\)

Tan\(\widehat {SCA}\)= \(\frac{{SA}}{{AC}} = \frac{a}{a} = 1 \Rightarrow \widehat {SCA} = 45^\circ \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP