Câu hỏi:

13/07/2024 2,804

Chứng minh rằng phương trình 2x4 – 3x3 – 5 = 0 có ít nhất một nghiệm.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đặt f(x) = 2x4 – 3x3 – 5, f(x) là hàm đa thức nên liên tục trên ℝ.

Do đó f(x) liên tục trên đoạn [1;2]

f(1) = −6, f(2) = 3 Þ f(1).f(2) = −18 < 0

Þ phương trình f(x) = 0 có ít nhất một nghiệm trong khoảng [1; 2].

Vậy phương trình đã cho có ít nhất một nghiệm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Ta có AC là hình chiếu vuông góc của SC trên mặt phẳng (ABCD) Þ \(\widehat {SCA}\) là góc giữa SC và mặt phẳng (ABCD)

Ta có AC = 2a (đường chéo hình vuông ABCD)

Tan \(\widehat {SCA}\)= \(\frac{{SA}}{{AC}} = \frac{{3a}}{{2a}} = \frac{3}{2}\) Þ \(\widehat {SCA}\)= 56°18’

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Media VietJack

Ta có SA ^ (ABC) Þ AC là hình chiếu của SC lên (ABC)

Þ [SC,(ABC)] = \(\widehat {SCA}.\)

Tan\(\widehat {SCA}\)= \(\frac{{SA}}{{AC}} = \frac{a}{a} = 1 \Rightarrow \widehat {SCA} = 45^\circ \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP