Câu hỏi:

12/07/2024 2,587

Gọi H là hình chiếu vuông góc của A trên SC. Chứng minh AH ^ BD và tính độ dài đoạn AH.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải:

Ta có: \(\left. {\begin{array}{*{20}{c}}{BD \bot AC}\\{BD \bot SA}\end{array}} \right\}\)Þ BD ^ (SAC) mà AH Ì (SAC) Þ AH ^ BD.

Ta lại có: ∆SAC vuông tại A Þ AH = \(\frac{{SA.AC}}{{\sqrt {S{A^2} + A{C^2}} }} = \frac{{6a\sqrt {13} }}{{13}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Ta có AC là hình chiếu vuông góc của SC trên mặt phẳng (ABCD) Þ \(\widehat {SCA}\) là góc giữa SC và mặt phẳng (ABCD)

Ta có AC = 2a (đường chéo hình vuông ABCD)

Tan \(\widehat {SCA}\)= \(\frac{{SA}}{{AC}} = \frac{{3a}}{{2a}} = \frac{3}{2}\) Þ \(\widehat {SCA}\)= 56°18’

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Media VietJack

Ta có SA ^ (ABC) Þ AC là hình chiếu của SC lên (ABC)

Þ [SC,(ABC)] = \(\widehat {SCA}.\)

Tan\(\widehat {SCA}\)= \(\frac{{SA}}{{AC}} = \frac{a}{a} = 1 \Rightarrow \widehat {SCA} = 45^\circ \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP