Câu hỏi:

13/07/2024 1,820

Cho đường thẳng: m1x+m2y=1 (với m là tham số). Chứng minh rằng đường thẳng luôn đi qua một điểm cố định với mọi giá trị của m.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giả sử Mx0;y0 là điểm cố định thuộc đường thẳng đã cho. Ta có:

m1x0+m2y0=1 với mọi m  mx0+y0x0+2y0+1=0 với mọi m

x0+y0=0x0+2y0+1=0y0=1x0=1

Vậy đường thẳng đã cho luôn đi qua điểm M1;1 với mọi m.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

b) Gọi A',B' lần lượt là hình chiếu của A và B xuống trục hoành.

b) Gọi A, B là hai giao điểm của d  và P . Tính diện tích tam giác OAB. (ảnh 1)

Ta có: SΔOAB=SAA'B'BSΔOAA'SΔOBB'

A'B'=xB'xA'=xA'xB'=5,AA'=yA=4,BB'=yB=9

Ta có: SAA'B'B=AA'+BB'2.A'B'=9+42.5=652 (đvdt)

SΔOAA'=12AA'.OA'=12.4.2=4 (đvdt)

SΔOBB'=12BB'.OB'=12.9.3=272 (đvdt)

Vậy diện tích tam giác OAB là: SΔOAB=SAA'B'BSΔOAA'SΔOBB'=6524272=15 (đvdt).

Lời giải

b) Gọi x1,x2 là nghiệm của phương trình (1). Theo định lí Vi-ét: x1+x2=m+2x1x2=3

Để x1,x2 x1x2=3 nên x1=1x2=3 hoặc x1=3x2=1 hoặc x1=3x2=1 hoặc x1=1x2=3

Suy ra x1+x2=2x1+x2=2m+2=2m+2=2m=0m=4

Vậy với m = 0 hoặc m = -4 thì (d) và (P) cắt nhau tại hai điểm phân biệt có hoành độ là các số nguyên.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP