Câu hỏi:
13/07/2024 2,469Cho tứ giác ABCD có diện tích 36 cm2, trong đó diện tích \[\Delta ABC\] là 11 cm 2. Qua điểm B kẻ đường thẳng song song với AC cắt AD ở M, cắt CD ở N. Tính diện tích \[\Delta MND\].
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có:
\[{S_{\Delta ADC}} = {S_{ABCD}} - {S_{\Delta ABC}} = 25c{m^2}\]
Dễ dàng chứng minh được \[\Delta DAC\~\Delta DMN\]
Suy ra
\[\frac{{{S_{\Delta ADC}}}}{{{S_{\Delta DMN}}}} = {\left( {\frac{{AC}}{{MN}}} \right)^2} = {k^2}\]
Kẻ \[AH \bot MN\]
Đặt \[{S_{\Delta DMN}} = S,\,\,{S_{\Delta ADC}} = {S_1},\,{S_{ACNM}} = {S_2}\] thì ta có:
\[{S_1} = {k^2}S \Rightarrow S = \frac{{{S_1}}}{{{k^2}}} = \frac{{25}}{{{k^2}}}\]
\[{S_{\Delta ABC}} = \frac{1}{2}AH.AC\]
\[{S_2} = {S_{\Delta AMB}} + {S_{\Delta BCN}} + {S_{\Delta ABC}} = \frac{1}{2}AH.MB + \frac{1}{2}AH.NB + \frac{1}{2}AH.AC\]
\[ = \frac{1}{2}AH(MN + AC) = \frac{1}{2}AH.\left( {\frac{{AC}}{k} + AC} \right) = \frac{{k + 1}}{k}{S_{\Delta ABC}}\]
\[ \Rightarrow {S_2} = \frac{{11(k + 1)}}{k}\]
Mặt khác \[S = {S_1} + {S_2} \Rightarrow \frac{{25}}{{{k^2}}} = 25 + \frac{{11(k + 1)}}{k} \Leftrightarrow 25{k^2} + 11k(k + 1) - 25 = 0 \Leftrightarrow k = \frac{{25}}{{36}}\]
Vậy \[S = 51,84c{m^2}\]
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC vuông tại B. Đường phân giác AD. Biết \[AB = 6cm,\,\,AC = 10cm\].
Qua D kẻ đường thẳng vuông góc với BC cắt AC tại K. Qua K kẻ đường thẳng vuông góc với AD cắt AD, AB, BC lần lượt tại E, F, H. Chứng minh \[\Delta ABC\sim\Delta HDK\]
Câu 2:
Cho tam giác ABC vuông tại A. Kẻ đường cao AH của tam giác.
Kẻ \(HM \bot AB\) và \(HN \bot AC\). Chứng minh \(AM.AB = AN.AC\)
Câu 3:
Cho tam giác ABC vuông tại A. Kẻ đường cao AH của tam giác.
Chứng minh \(\Delta AMN\sim\Delta ACB\)
Câu 4:
Cho tam giác ABC vuông tại B. Đường phân giác AD. Biết \[AB = 6cm,\,\,AC = 10cm\].
Tính BD và CD
Câu 5:
Cho tam giác ABC cân tại A, M là trung điểm của BC. Lấy các điểm D và E trên AB, AC sao cho \[\widehat {DME} = \widehat B\]
Chứng minh rằng \[\Delta BDM\sim\Delta CME\]
Câu 6:
Cho tam giác ABC có \[AB = 18cm,\,AC = 24cm,\,BC = 30cm\]. Gọi M là trung điểm của BC. Qua M kẻ đường vuông góc với BC cắt AB, AC lần lượt ở D, E.
Chứng minh rằng: \[\Delta ABC\sim\Delta MDC\]
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 01
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
23 câu Trắc nghiệm Toán 9 Bài 1: Căn thức bậc hai có đáp án
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 02
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 06
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 03
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 04
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 05
về câu hỏi!