Câu hỏi:
11/07/2024 755
Cho tam giác ABC nội tiếp trong một đường tròn (O). M ; N ; P lần lượt là cá điểm chính giữa các cung nhỏ . MN và NP cắt AB và AC theo thứ tự ở R và S. Chứng minh rằng: RS // BC và RS đi qua tâm của đường tròn nội tiếp tam giác ABC.
Quảng cáo
Trả lời:

Do đó
(Góc ngoài của tam giác ABI)
=> NBI cân tại N => N thuộc trung trực của đoạn thẳng BI.
Ta chứng minh đường trung trực của đoạn thẳng này chính là RN.
Gọi H là giao điểm của MN và PB. Ta có :
Vì là góc có đỉnh nằm bên trong đường tròn và
=> RN là trung trực của đoạn thẳng BI => BR = RI
=> RBI cân tại R
=> IR // BC (Vì tạo với các tuyến BI hai góc so le trong bằng nhau)
Cũng chứng minh tương tự ta cũng được IS // BC, từ điểm I ở ngoài đường thẳng BC ta chỉ có thể kẻ được một đường thẳng song song với BC
=> R ; I ; S thẳng hàng.
Vậy RS // BC và RS đi qua tâm I của đường tròn nội tiếp tam giác ABC.

Áp dụng tính chất đường phân giác trong tam giác ABN ta có: (1)
Tương tự: NP là phân giác của tam giác ACN => (2)
vì nên BN = CN kết hợp với (1) và (2) ta được
=> RS // BC (định lý Ta-lét đảo)
Gọi giao điểm của RS với AN là I, của BC và AN là D vì RS // BC nên ta có:
mà suy ra
BND ANB (vì có góc chung và )
Nên . Vậy
Suy ra BI là phân giác của góc
Ở trên ta có I thuộc phân giác AN của ta lại vừa chứng minh I thuộc phân giác nên I là tâm của đường tròn nội tiếp tam giác ABC.( Đpcm)
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Vì => tứ giác BDPE là tứ giác nội tiếp
(*)(Góc nội tiếp cùng chắn một cung)
=> tứ giác EFCP cũng là tứ giác nội tiếp
(**) (Góc nội tiếp cùng chắn một cung)
Vì tứ giác ABPC nội tiếp đường tròn (1)
(2)
Từ (1) và (2)
(***)
Từ (*) ; (**) và (***)
= D ; E ; F thẳng hàng.
Cách giải 2:
Tứ giác EFCP là tứ giác nội tiếp (1)
Vì tứ giác ABPC nội tiếp đường tròn
Mà (2)
Tứ giác EPDB là tứ giác nội tiếp => ( 3)
Từ (1) ; (2) và (3) ta có :
Suy ra ba điểm D ; E ; F thẳng hàng