Câu hỏi:

11/07/2024 558

Từ một điểm trên đường tròn ngoại tiếp của một tam giác bất kì hạ các đường  vuông góc xuống ba cạnh của tam giác ABC nội tiếp đường tròn. Chứng minh rằng chân của ba đường vuông góc đó thẳng hàng
Từ một điểm trên đường tròn ngoại tiếp của một tam giác bất kì hạ các đường  vuông góc xuống ba cạnh của tam giác ABC nội tiếp đường tròn (ảnh 1)

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cách giải 1:
D^=E^=90=> tứ giác BDPE là tứ giác nội tiếp
BED^=BPD^ (*)(Góc nội tiếp cùng chắn một cung)
F^=E^=90 => tứ giác EFCP cũng là tứ giác nội tiếp
FEC^=FPC^ (**) (Góc nội tiếp cùng chắn một cung)
Vì tứ giác ABPC nội tiếp đường tròn BPC^=π-A^(1)
PDABPFACDPF^=π-A^ (2)
Từ (1) và (2) BPC^=DPF^
BPD^=FPC^ (***)
Từ (*) ; (**) và (***)
= D ; E ; F thẳng hàng.

Cách giải 2:
PEECPFFCTứ giác EFCP là tứ giác nội tiếp FEP^+PCF^=180 (1)
Vì tứ giác ABPC nội tiếp đường tròn ABP^+FCP^=180
ABP^+BDP^=180FCP^=DBP^ (2)
PDBDPEBCTứ giác EPDB là tứ giác nội tiếp => DBP^=DEP^( 3)
Từ (1) ; (2) và (3) ta có : PEF^+DEP^=180
Suy ra ba điểm D ; E ; F thẳng hàng

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC nội tiếp trong một đường tròn (O). M ; N ; P lần lượt là cá điểm chính giữa các cung nhỏ AB^; BC^; CA^. MN và NP cắt AB và AC theo thứ tự ở R và S. Chứng minh rằng: RS // BC và RS đi qua tâm của đường tròn nội tiếp tam giác ABC.

Xem đáp án » 11/07/2024 657