Câu hỏi:

12/07/2024 1,317

Có một cây tre có độ cao là a. Khi gãy ngọn tre chạm đất ở một khoảng cách là b so với gốc tre. Hãy tìm độ cao chỗ cây tre.

Có một cây tre có độ cao là a. Khi gãy ngọn tre chạm đất ở một khoảng cách là b so với gốc tre. (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta phải tính cạnh a của một tam giác vuông có cạnh bên là b và cạnh huyền là c=d-a.

Theo định lí Pythagore ta có: a2+b2=(da)2.

Từ đây suy ra: a=d2b22d.

Trường Thiên

Trường Thiên

Kim mo chi

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giả sử chiều rộng của ao là ED=2a=3,33 (m), C là trung điểm của ED nên: DC=a=1,665 (m).

Chiều cao cây sậy mặt giữa ao là AB, phần nhô khỏi mặt nước AC=0,33 (m).

AB=BD, giả sử BD=c, độ sâu của nước BC=b, tam giác BCD là tam giác vuông. Rõ ràng là AC=ABBC=cb=0,33 (m).

Độ dài của AC bằng hiệu giữa đường huyền với cạnh dài của góc vuông.

Vậy bài toán quy về việc tính chiều dài cạnh huyền và cạnh góc vuông lớn của
 một tam giác vuông khi biết cạnh góc vuông bé và hiệu giữa cạnh huyền và cạnh góc vuông lớn.

Từ định lí Pythagore, ta có:

a2=c2b2

a2(cb)2=c2b2(cb)2

=c2b2(c22bc+b2)

=2bc2b2

=2b(cb).

Vì thế

b=a2(cb)22(cb)                     (1)

c=b+(cb)             (2)

Đem giá trị của a, c-b thay vào hai công thức (1) và (2) sẽ dễ dàng tính được độ sâu của nước là:

b=1,66520,3322.0,33=2,7722250,10890,664,035 (m).

Độ cao của cây sậy là: c=4,035+0,33=4,365 (m).

Lời giải

Nếu cây có độ dài athì có bài toán là tính độ dài ccủa cạnh huyền một tam giác vuông có cạnh bên là a=cdb. Theo định lí Pythagore ta có:

a=c-d.

Từ đây suy ra: c=b2+d22d.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP