Câu hỏi:

13/07/2024 1,748

c, Chứng minh rằng nếu tam giác ABC có tanB.tanC=3 thì OH//BC.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi G=OHAI . Trong ΔAHKcó AI, HO là hai đường trung tuyến

Glà trọng tâm tam giác AHKAGAI=23(1)(Tính chất trọng tâm của tam giác)

Xét tam giác ABC có AI là đường trung tuyến và AGAI=23(cmt)G là trọng tâm ΔABC.

Giả sử AD=xHD(x>1)

Ta có:

tanB=ADBD=xHDBD=xtanHBD^=xtanEBC^=x.ECBE;tanC=BEEC

tanB.tanC=x.ECBE.BEEC=x

Theo bài ra ta có: tanB.tanC=3x=3AD=3HDAHAD=23(2)

Từ (1) và (2) ta có:AHAD=AGAI=23HG//DIHG//BC (định lý Talet đảo)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

b, Tìm tất cả các giá trị của tham số m để phương trình x22mx+m2m+1=0 có hai nghiệm x1,x2 thỏa x232x13+6mx1=19

Xem đáp án » 13/07/2024 4,250

Câu 2:

Tổng của chữ số hàng trăm và chữ số hàng đơn vị của một số có ba chữ số là 14. Nếu viết số đó theo thứ tự ngược lại thì được số mới nhỏ hơn số ban đầu là 396 Tìm số đó biết rằng chữ số hàng chục nhỏ hơn chữ số hàng đơn vị là 1 đơn vị.

Xem đáp án » 13/07/2024 2,651

Câu 3:

Cho tam giác ABC ( AB< AC ) nội tiếp đường tròn (O). Các đường cao AD, BE, CF của tam giác ABC cắt nhau tại H

Chứng minh tứ giác BCEF nội tiếp

Xem đáp án » 13/07/2024 2,152

Câu 4:

Cho biểu thức : P=xx+5x+15x59xx25

Rút gọn biểu thức P

Xem đáp án » 13/07/2024 2,149

Câu 5:

b,Gọi I là trung điểm của cạnh BC, K là điểm đối xúng của H qua I. Chứng minh ba điểm A,O,K thẳng hàng

Xem đáp án » 13/07/2024 1,542

Câu 6:

a, Giải phương trình x2+4x24x+8x=9

Xem đáp án » 13/07/2024 1,165

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store