Câu hỏi:

11/07/2024 5,995

Cho đường tròn đường kính AB , các điểm C,D nằm trên đường tròn đó sao cho C,D nằm khác phía đối với đường thẳng AB , đồng thời AD>AC. Gọi điểm chính giữa của các cung nhỏ AC,AD lần lượt là M,N ; giao điểm của MN với AC,AD lần lượt là H,I; giao điểm của MD và CN là K.

a) Chứng minh ACN^=DMN^ . Từ đó suy ra tứ giác  MCKH nội tiếp.

b) Chứng minh KH  song song với AD .

c) Tìm hệ thức liên hệ giữa sđ AC và sđ AD để  song song với ND  .

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho đường tròn đường kính AB , các điểm  C,D nằm trên đường tròn đó sao cho C,D nằm khác phía đối với đường thẳng AB , đồng thời  AD>AC. Gọi điểm chính giữa của các cung nhỏ AC,AD  lần lượt là M,N ; giao điểm của  MN với AC,AD lần lượt là  H,I; giao điểm của  MD  và CN  là  K. (ảnh 1)

Ta có .ACN^=12AN=12DN=DMN^*         

Xét tứ giác MCKH    KCH^=KMH^ (do *  ). Do đó, tứ giác MCKH   nội tiếp.

b) Do tứ giác MCKH  nội tiếp nên HKM^=HCM^=12AM=ADM^  .

Suy ra, HK//AD  (hai góc đồng vị).

c) Ta có CKM^=12MC+DN  ; MCK^=12MA+AN=12MC+DN .

 MKC^=MCK^ ΔMCKcân tại MC=MK  mà MC=MAMA=MK  .

Do đó,  ΔMAK cân tại M.

 là phân giác góc AMK^  nên MNAKMNDN .

Do đó,  là đường kính của đường tròn tâm  đường kính .

Suy ra, MA+AD=180°12AC+AD=180° .

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho đường tròn (O; R) có đường kính AB vuông góc với dây cung MN tại H (H nằm giữa O và B). Trên tia MN lấy điểm C nằm ngoài đường tròn (O; R) sao cho đoạn thẳng AC cắt đường tròn (O; R) tại điểm K (K khác A), hai dây MN và BK cắt nhau ở E. a) Chứng minh rằng tứ giác AHEK là tứ giác nội tiếp. b) Chứng minh: CA.CK = CE.CH. c) Qua điểm N, kẻ đường thẳng (d) vuông góc với AC, (d) cắt tia MK tại F. Chứng minh tam giác  cân. d) Khi KE = KC. Chứng minh rằng: OK // MN. (ảnh 1)

a) Chứng minh rằng tứ giác AHEK là tứ giác nội tiếp.

Ta có :  AHE^=900

AKB^=900  AHE^+AKB^=1800                  (1)

Hai góc AHE^,AKB^  đối nhau           (2)

Từ (1), (2) ta có tứ giác AHEK nội tiếp đường tròn đường kính AE.

b) Chứng minh: CA.CK = CE.CH.

Do tứ giác AHEK nội tiếp nên   HAK^=KEN^   

 chung và HAK^=KEN^    AHC^=EKC^=900     

nên CKCH=CECACK.CA=CH.CE

c)Qua điểm N, kẻ đường thẳng (d) vuông góc với AC, (d) cắt tia MK tại F. Chứng minh tam giác cân.

            Do KB // FN nên    EKN^=KNF^,MKB^=KFN^                       (3)

MKB^=EKN^  (góc nội tiếp cùng chắn cung bằng nhau)      (4)

(3), (4) KNF^=KFN^   nên tam giác KFN cân tại K.

d) Khi KE = KC. Chứng minh rằng: OK // MN.

Ta có  vuông tại K.

mà KE = KC nên tam giác KEC vuông cân tại K KEC^=450

OAK^=OKA^=KEC^=450AOK^=900 hay

MNAB  nên OK //MN

 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP