Câu hỏi:
11/07/2024 12,379
Cho đường tròn (O;R) và điểm A nằm ngoài đường tròn đó. Kẻ cát tuyến AMN không đi qua (O) (M nằm giữa A và N). Kẻ hai tiếp tuyến AB, AC với (O;R). (B và C là hai tiếp điểm và C tuộc cung nhỏ MN). Đường thẳng BC cắt MN và AO lần lượt tại E và F. Gọi I là trung điểm của MN.
a) Chứng minh rằng tứ giác ABOC nội tiếp được trong đường tròn.
b) Chứng minh EB.EC = EM.EN và IA là phân giác của .
c) Tia MF cắt (O;R) tại điểm thứ hai là D. Chứng minh rằng và .
d) Giả sử OA = 2R. Tính diện tích tam giác ABC theo R.
Cho đường tròn (O;R) và điểm A nằm ngoài đường tròn đó. Kẻ cát tuyến AMN không đi qua (O) (M nằm giữa A và N). Kẻ hai tiếp tuyến AB, AC với (O;R). (B và C là hai tiếp điểm và C tuộc cung nhỏ MN). Đường thẳng BC cắt MN và AO lần lượt tại E và F. Gọi I là trung điểm của MN.
a) Chứng minh rằng tứ giác ABOC nội tiếp được trong đường tròn.
b) Chứng minh EB.EC = EM.EN và IA là phân giác của .
c) Tia MF cắt (O;R) tại điểm thứ hai là D. Chứng minh rằng và .
d) Giả sử OA = 2R. Tính diện tích tam giác ABC theo R.
Câu hỏi trong đề: Bộ đề Ôn tập Toán 9 thi vào 10 năm 2019 có đáp án !!
Quảng cáo
Trả lời:

a) Vì AB là tiếp tuyến của (O) tại tiếp điểm B AB OB hay
Vì AC là tiếp tuyến của (O) tại tiếp điểm C AC OC hay .
Tứ giác ABOC có nên tứ giác ABOC nội tiếp đường tròn đường kính AO.
b) Xét và có:
(hai góc nội tiếp cùng chắn cung NB)
(hai góc nội tiếp cùng chắn cung MC)
.
Vì AB, AC là tiếp tuyến của (O) lần lượt tại các tiếp điểm B và C nên và AB = AC (tính chất hai tiếp tuyến cắt nhau)
Vì I là trung điểm MN (quan hệ vuông góc giữa đường kính và dây)
I nằm trên đường tròn đường kính OA.
Xét đường tròn đường kính OA ta có:
(hai góc nội tiếp cùng chắn một cung)
Mà
hay IA là phân giác của .
d) Xét vuông tại C ta có:
.
Xét vuông tại C ta có:
có AB = AC và suy ra là tam giác đều.
đường cao
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Vì ABCD là hình vuông
Tam giác SAO vuông tại O nên áp dụng Pytago ta có:
b) T a có diện tích mặt đáy là:
Thể tích của kim tự tháp là
Lời giải

a) Chứng minh rằng tứ giác AHEK là tứ giác nội tiếp.
Ta có :
(1)
Hai góc đối nhau (2)
Từ (1), (2) ta có tứ giác AHEK nội tiếp đường tròn đường kính AE.
b) Chứng minh: CA.CK = CE.CH.
Do tứ giác AHEK nội tiếp nên
vì chung và
nên
c)Qua điểm N, kẻ đường thẳng (d) vuông góc với AC, (d) cắt tia MK tại F. Chứng minh tam giác cân.
Do KB // FN nên (3)
mà (góc nội tiếp cùng chắn cung bằng nhau) (4)
(3), (4) nên tam giác KFN cân tại K.
d) Khi KE = KC. Chứng minh rằng: OK // MN.
Ta có vuông tại K.
mà KE = KC nên tam giác KEC vuông cân tại K
hay
mà nên OK //MN
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.