Câu hỏi:

11/07/2024 3,763

Cho điểm S cố định ở bên ngoài đường tròn (O). Vẽ tiếp tuyến SA của đường tròn (O) (với A là tiếp điểm) và cát tuyến SCB không qua tâm O, điểm O nằm trong góc ASB, điểm C nằm giữa SB. Gọi H là trung điểm của đoạn thẳng CB.

a)      Chứng minh rằng tứ giác SAOH nội tiếp một đường tròn

b)      Chứng mnh rằng  SA2=SB.SC

c)      Gọi MN là đường kính bất kỳ của đường tròn (O) sao cho ba điểm S, M, N không thẳng hàng. Xác định vị trí của MN để diện tích tam giác SMN lớn nhất

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
 
Cho điểm S cố định ở bên ngoài đường tròn (O). Vẽ tiếp tuyến SA của đường tròn (O) (với A là tiếp điểm) và cát tuyến SCB không qua tâm O, điểm O nằm trong góc ASB, điểm C nằm giữa S và B. Gọi H là trung điểm của đoạn thẳng CB. a)	Chứng minh rằng tứ giác SAOH nội tiếp một đường tròn b)	Chứng mnh rằng    c)	Gọi MN là đường kính bất kỳ của đường tròn (O) sao cho ba điểm S, M, N không thẳng hàng. Xác định vị trí của MN để diện tích tam giác SMN lớn nhất  (ảnh 1)

a)      H là trung điểm của BC  OHBCOHC^=90°

Tứ giác OASH có : OAS^+OHS^=90°+90°=180°OASH  là tứ giác nội tiếp

b)      Xét ΔSAB  ΔSCA có : S^  chung; SBA^=SAC^   (cùng chắn cung AC)

 ΔSABΔSCA(g.g)

c)      Kẻ SKMN

Ta có SSMN=12SK.MN12SO.MN (vì ΔOKS  vuông tại O )

Vậy để SSMN lớn nhất thì SO=SKHO

SO vừa là đường trung tuyến, vừa là đường cao

 ΔSMN cân tại S

MNSO

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho đường tròn (O; R) có đường kính AB vuông góc với dây cung MN tại H (H nằm giữa O và B). Trên tia MN lấy điểm C nằm ngoài đường tròn (O; R) sao cho đoạn thẳng AC cắt đường tròn (O; R) tại điểm K (K khác A), hai dây MN và BK cắt nhau ở E. a) Chứng minh rằng tứ giác AHEK là tứ giác nội tiếp. b) Chứng minh: CA.CK = CE.CH. c) Qua điểm N, kẻ đường thẳng (d) vuông góc với AC, (d) cắt tia MK tại F. Chứng minh tam giác  cân. d) Khi KE = KC. Chứng minh rằng: OK // MN. (ảnh 1)

a) Chứng minh rằng tứ giác AHEK là tứ giác nội tiếp.

Ta có :  AHE^=900

AKB^=900  AHE^+AKB^=1800                  (1)

Hai góc AHE^,AKB^  đối nhau           (2)

Từ (1), (2) ta có tứ giác AHEK nội tiếp đường tròn đường kính AE.

b) Chứng minh: CA.CK = CE.CH.

Do tứ giác AHEK nội tiếp nên   HAK^=KEN^   

 chung và HAK^=KEN^    AHC^=EKC^=900     

nên CKCH=CECACK.CA=CH.CE

c)Qua điểm N, kẻ đường thẳng (d) vuông góc với AC, (d) cắt tia MK tại F. Chứng minh tam giác cân.

            Do KB // FN nên    EKN^=KNF^,MKB^=KFN^                       (3)

MKB^=EKN^  (góc nội tiếp cùng chắn cung bằng nhau)      (4)

(3), (4) KNF^=KFN^   nên tam giác KFN cân tại K.

d) Khi KE = KC. Chứng minh rằng: OK // MN.

Ta có  vuông tại K.

mà KE = KC nên tam giác KEC vuông cân tại K KEC^=450

OAK^=OKA^=KEC^=450AOK^=900 hay

MNAB  nên OK //MN

 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP